REGULARIZATION PROPERTIES OF THE 2D HOMOGENEOUS
BOLTZMANN EQUATION WITHOUT CUTOFF

VLAD BALLY AND NICOLAS FOURNIER

ABSTRACT. We consider the 2-dimensional spatially homogeneous Boltzmann equation for hard
potentials. We assume that the initial condition is a probability measure that has some expo-
nential moments and is not a Dirac mass. We prove some regularization properties: for a class of
very hard potentials, the solution instantaneously belongs to H”, for some r € (—1,2) depending
on the parameters of the equation. Our proof relies on the use of a well-suited Malliavin calculus
for jump processes.

1. INTRODUCTION

The Boltzmann equation. We consider a spatially homogeneous gas in dimension 2 modeled by
the Boltzmann equation. The density f;(v) of particles with velocity v € R? at time ¢ > 0 solves

/2
) af) = [ e [ 8Bl = vl O ~ F0)f)],
R2 —m/2
where
P e o V — Uy ;U U UV — Uy
v = 5 + Ry ( B > , U, = 5 — Ry < 5 )

and where Ry is the rotation of angle . One usually integrates 6 on (—m, ), but a famous trick
allows one to restrict the integration to [—m/2, /2] without loss of generality, see e.g. the argument
in the introduction of [I]. The cross section B(Jv — v.|,6) > 0 is given by physics and depends
on the type of interaction between particles. We refer to the review paper of Villani [I6] for more
details. Conservation of mass, momentum and kinetic energy hold for reasonable solutions to (1))

viz0, [ filv)d@)do= / o) b@)dv, =10, ]uf?
R2 R2

and we classically may assume without loss of generality that [p, fo(v)dv =1 and [, vfo(dv) = 0.

Assumptions. We shall assume here that for some v € (0,1), v € (0,1/2), some even function
b: [—r/2,7/2)\{0} — Ry,

B(Jv = v, 0) = [o = v.[7b(6),
(A(vy,v)) J0<e<C, VOe(0,m/2], ch 17V <b(0) <CO LY,

Vk>1, 3C,, VOc(0,7/2], [b* (@) <Crb 1k,

This assumption is made by analogy to the case where particles collide by pairs due to a repulsive
force proportional to 1/r® for some s > 2 in dimension 3, for which v = (s — 5)/(s — 1) and
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b(0) ~ |07, with v = 2/(s — 1). We aim to study here hard potentials (s > 5), for which
v € (0,1) and v € (0,1/2).

Weak solutions. For § € (—7/2,7/2), we introduce

1 1 fcosf—1 —siné
A<9)_§(R9_I)_§( sin 6 cos@—l)'

Note that v = v + A(0)(v — v.) and that for X € R,
1 62
(1.2) |A0)X|? = 5(1 —cos )| X|* < Z|X|2.

Definition 1.1. Assume (A(v,v)) for some v € (0,1) and v € (0,1]. A family (fi)icjo, ) of
probability measures on R? is said to be a weak solution of (L) if for all t € [0,T],

(13) [ontan) = [ ot and [ plne) = [ Rl < oo

and if for any ¢ : R? — R globally Lipschitz continuous and any t € [0,T],

d /2

) g oo s = [ g [ s [ @) e 40 o) - v

The right hand side of (L)) is well-defined due to ([3)), (CA) and because fjﬁz |0]b(0)df < o
thanks to (A(y,v)) with v € (0,1). As shown in [I0, Corollary 2.3 and Lemma 4.1], we have the

following result.

Theorem 1.2. Assume (A(y,v)) for some v € (0,1) and v € (0,1]. Assume also that b(0) =
b(cos ), for some nondecreasing convex C* function b on [0,1). Let fo be a probability measure on
R? such that for some 6 € (7,2), [ e‘”'éfo(du) < 00. There exists a unique weak solution (fi)i>o

to (D) starting from fo. Furthermore, for all k € (0,8), sup,q [g €/*" fi(dv) < oo.

The additional condition that b is nondecreasing and convex is made for convenience, and
typically holds if b(8) ~ |§]~1~".

Sobolev spaces. For f a probability measure on R?, we set, for ¢ € R?, f({) = fR2 &) f(dx).
Recall that for r € R,

H™(R?) = {f, Ifllar@ey < oo}, where |[|f[[Frge) = /Rz(l + 1P F(©)Pdg.

Let us recall the following classical results. For f a probability measure on R?
o f € H"(R?) for every r < —1;

o if f € H"(R?) for some r > 0, then f has a density that belongs to L?*(R?);
o if f € H"(R?) for some r > 1, then f has a bounded and continuous density.

Main result. We need to introduce, for v € (0,1/2) and v € (0, 1) satisfying v > v?/(1 — 2v),

1 1-2
(1.5) Gyw =5 \/(7+V+1)2+4<M—V>—(7+V+1) > 0,
Qv if ay, <2,
(1.6) o =3 C+7(01—2v) -1

if v > 2.
I+y+vv+1 G

As we will see in Lemma B3 ¢, > 2 in the latter case.
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Theorem 1.3. Assume (A(v,v)), for some v € (0,1), v € (0,1/2), such that v > v*/(1 — 2v).
Consider a weak solution (ft)ieo,r) to {LD) such that fy is not a Dirac mass and, for some
de(yvuyl),

(1.7) sup / elv‘aft(dv)<oo.
te[0,T7] JR2

(i) For all to € (0,77,

Vg€ (0,¢,), YEER? [su%m(mscto,T,q<1+|5|>*q,
to,

Vr<gy,—1, sup |[fe|[arge) < oo,
[t(),T]
Vge(0,¢y), Y€ R? Ve>0, sup fi(Ball(vo, €)) < Cty1,q€%

[tO >T]

(ii) If v € (0,1/3) and v > (2v+ 2v?)/(1 — 3v), then gy, > 1. Thus f; has a density belonging
to L*(R?) for all t € (0, 7).

(ii) If finally v € (0,1/4) and v > (6v+3v?)/(1 —4v), then q,, > 2. Thus f; has a continuous
and bounded density for all t € (0,T].

Discussion about the result. In the realistic case where v = (s —5)/(s —1) and v =2/(s — 1),
point (i) applies if s > 7, point (ii) applies if s > 8 + /33 ~ 13.75, point (iii) applies if s >
13 +2v/31 ~ 24.14.

When at least point (ii) applies, this shows in particular that for all ¢ > 0, H(f;) < oo, where the
entropy is defined as H(f) := fR2 f(v)log f(v)dv. This allows us to apply many results concerning
regularization (see e.g. Villani [I5] or Alexandre-Desvillettes-Villani-Wennberg [1]) or large time
behavior (see e.g. Villani [I6]) where the finiteness of entropy is required.

Until the middle of the 90’s, almost all the works on the Boltzmann equation were assuming
Grad’s angular cutoff, where the cross section B, which physically satisfies foﬂ/z B(Jv—vs«/|,0)df = o
was replaced by an integrable cross section. As shown in Mouhot-Villani [I2], no regularization
may occur under Grad’s angular cutoff. Intuitively, this comes from the fact that each particle is
subjected to finitely (resp. infinitely) many collisions on each time interval in the case with (resp.
without) cutoff. See however [8] where it is shown on a simplified model that some regularization
might occur under Grad’s angular cutoff, but for some very soft potentials (i.e. with v < —1).

Here we deal with true hard potentials and we thus have to overcome the three following diffi-
culties: |w|? vanishes at 0, explodes at infinity and is not smooth at 0. This lack of regularity is
the basis of many technical complications.

Many papers deal with the case of regularized hard potentials, where |[v — v.|? is replaced by
something like (¢2 4 [v — v,]?)7/2. In this situation, Desvillettes-Wennberg [6] have shown that if
fo is a function such that H(fy) < oo, then f; € C* for all ¢ > 0 for any v € (0, 1), any v € (0,2),
in any dimension.

Another simpler situation is the case of Maxwell molecules, where v = 0 so that |v — v.|7 is
constant. Using a probabilistic approach, Graham-Méléard [I1] (for the 1-dimensional case) and
[1 (for the 2-dimensional case) proved that if fy is a measure with some moments of all orders and
is not a Dirac mass, then f; € C* for all ¢ > 0. In these works, the finiteness of entropy is not
required.
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To our knowledge, the only regularization result that concerns true hard potentials is that of
Alexandre-Desvillettes-Villani-Wennberg [I]: in any dimension d > 2, if fy is a function such that

H(fo) < oo, then any weak solution satisfies \/f; € HZ){ZQ(RQ) for all ¢ > 0, for any value of
v € (—d, 1) and any value of v € (0,2).

Let us compare our result with that of [I]. The main limitation of our study is that we work in
dimension 2. Furthermore, the result of [I] applies to all potentials, while we have to assume at
least s > 7.

A first positive point is that we assume much less regularity on the initial condition (in [, fo
is already a function): we only assume that fy is not a Dirac mass. This is a necessary condition
for regularization, since Dirac masses are stationnary solutions to ([LTI).

A second positive point is that we deal with the regularity of fi, which seems more natural and
tractable than that of \/f;.

Finally, if v > 0 is small and v € (0, 1) is large, our result seems really competitive. For example
if y=(s-5)/(s—1)and v =2/(s — 1), then (denoting by H"™ = Nye(o,r) H°*),

o with s = 15 we obtain f, € H1/D~(R2) while [I] yields v/J; € H.(R?),

o with s = 25 we obtain get f; € H(172/160~(R2) while [1] yields v/J; € H,/'?(R?),

loc

e with s = 101, we obtain f, € H(4504/2599)~ (R2) while [1] yields /f; € H,/™ (R?).

Let us finally mention that for any values of v € (0,1) and v € (0,1/2), our result will never
provide a better estimate than f, € H>~(R?).

Thus the result of [I] and Theorem are complementary: Theorem works well for large
values of s, while [T] works well for small values of s. For intermediate values of s, Theorem
allows us to apply [I], even if the initial condition has an infinite entropy.

We conclude this subsection with a remark on regularized hard potentials: if v € (0,1/3), our
method allows us to extend the result of Desvillettes-Wennberg [6] to initial conditions with infinite
entropy.

Remark 1.4. Assume that B(|Jv —v.l|,0) = (2 + |[v —v.|?)7/2b(6), for some € > 0, some v € (0,1)
and some b satisfying the same conditions as in (A(vy,v)) for some v € (0,1/2). With our method,
it is possible to prove that for (fi)iejo,1) @ weak solution to {LA) satisfying [I"4) and such that fo

is mot a Dirac mass, for 0 <ty < T, supp, 1 1£:(8)] < Crorn(L+ |EN)T for all v € (0,1/v — 2).
In particular if v € (0,1/3), we deduce that f; € L*(R?) so that H(f;) < oo for any t > 0. Thus
we can apply the result of [6], and deduce that f, € C°°(R?) for all t > 0.

Discussion about the method. Following the seminal work of Tanaka [I3], we will build a
stochastic process (V;)ie[o,r] such that for each ¢ € [0,T], L(V;) = f;. This process will solve a
jumping stochastic differential equation. Then we will use some Malliavin calculus to study the
smoothness of f;, in the spirit of Graham-Méléard [IT]. When using the classical Malliavin calculus
for jumps processes of Bichteler-Gravereaux-Jacod [4], one can only treat the case of a constant
rate of jump, which corresponds here to the case where v = 0. This was done in [T}, [7]. We thus
have to build a suitable Malliavin calculus.

Recently Bally-Clément [2] introduced a new method, still inspired by [HE] which allows one
to deal with equations with a non-constant rate of jump. They discuss equations with a similar
structure as ([CIJ), but with much more regular coefficients. Here we use the same method, but
we have to overcome some nontrivial difficulties related to the singularity and unboundedness of
the coefficients. The nondegeneracy property is also quite complicated to establish, in particular
because |v — v,|7 vanishes on the diagonal, and because () is nonlinear.
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Plan of the paper. In the next section, we give the probabilistic interpretation of ([I1l) in terms
of a jumping S.D.E. We also build some approximations of the process and study their rate of
convergence. Another representation of the approximating processes is given in Section In
Section Bl we prove an integration by parts formula for the approximating process, using the
Malliavin calculus introduced in [2]. We conclude the proof in Section ll An appendix containing
technical results lies at the end of the paper.

Notation. In the whole paper, we assume without loss of generality that

(1.8) /R2 vfo(dv) =0 and ey = /R2 [v|? fo(dv) > 0.

Observe that ey > 0, because else, fy would be the Dirac mass at 0. We always assume at least
that (A(v,v)) hold for some v € (0,1), some v € (0,1). We denote by (fi)¢>0 & weak solution to
([CT) satisfying [C7) for some § > ~. We consider 1y such that

(1.9) no € (1/6,1/(yVv)).
For vg € R? and r > 0, we denote by
Ball(vg,r) = {v € R? |v — vg| <}

the open ball centered at vy with radius . We will always write C for a finite (large) constant
and c for a positive (small) constant, of which the values may change from line to line and which
depend only on b, v, v, 8,10, T, fo. When a constant depends on another quantity, we will always
indicate it. For example, Cy, or ¢, stand for constants depending on b, v,~,d, 10, T, fo and to.

2. PROBABILISTIC INTERPRETATION AND APPROXIMATION

We first build a Markov process (V;)¢co,7], solution to a jumping stochastic differential equation,
whose time marginals will be (f;)¢cjo,7]. The weak solution (f)ic[o,r) being given, we consider
a Poisson measure N (ds,df,dv,du) on [0,T] x [-7/2,7/2] x R? x [0, 00) with intensity measure
dsb(0)df fs(dv)du. Then for a R%-valued fo-distributed random variable Vj independent of N, we
consider the R%-valued stochastic differential equation, setting F = [—7/2,7/2] x R? x [0, 00),

t
(2.1) Vi = Vb—l—/ / A(@)(Vs_ —’U)]I{ug‘vi,vp}N(dS,d&dv,du).
0o JE

We also introduce some approximations of the process (V;)icjo,r7- We consider a C* even non-
negative function y supported by (—1, 1) satisfying fR x(x)dz = 1. Then we introduce, for z € R

and € € (0,1), (recall [C3))
(2.2) T, = [log(1/)]", o.(x) = /R (yv 20 nr) X E=9/9) )

€

Observe that we have 2e < ¢.(x) < T for all x > 0, ¢.(z) = = for x € [3¢,Tc — 1], ¢c(z) = 2¢
for € [0,¢] and ¢e(z) =T, for x > T'c + 1. We find ¢y > 0 small enough, in such a way that for
e €(0,¢p), 3¢ <1< T, —1 and consider, for € € (0,¢p), the equation

t
(23) ‘/te =Vo+ / / A(@)(‘/Si — v)]l{ugqﬁZ(lV;, _U‘)}N(ds, d@, d’U, du),
0 JE
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Next we introduce, for ¢ € (0,1), a function I, : Ry — [0,1] such that I(z) = 1 for > ¢ and
vanishing on a neighborhood of 0. We will choose I in the next section as a smooth version of
Tiy>¢)- We consider the equation

t
@) VS =Vor [ A0 08 T8N s, . v ),

The goal of this section is to check the following results.

Proposition 2.1. (i) There exists a unique cadlag adapted solution (V;)icjo,r) to (Z1). For each
€ € (0,e0) and each ¢ € (0,1), there evist some unique cadlag adapted solutions (V)iepo,r) and
(Vte’q)te[o,:r] to (Z3) and (22

(i) For all t € [0,T), Vi is fi-distributed.

(i) For any k € (v,6), any € € (0,¢0), any ¢ € (0, 1),

E lsup (elv‘lﬁ + elVil” —i—eIV:YCIN) < C,.

[0,7]

(iv) For any B € (v,1], any € € (0,¢), any ¢ € (0,1),

sup E [IVf - Vf’clﬂ < CperTe i,
[0,7]

(v) Assume furthermore that for some o > 0, some K, for all vo € R, for all € € (0,1],

sup fit(Ball(vg,€)) < Ke®.
(0,77

This always holds with K =1, a = 0. Then for any 8 € (v,1], any € € (0,¢e0), any ¢ € (0,1),

sup E [|Vt - Vf|ﬁ} < ngKeCBerﬁJr'”a.
[0,T]

Observe that e“T< is not very large: since T'? = [log(1/€)]? with ymy < 1 (recall (CH)), we
have e€T? < Cpe™ ", for any n > 0.

Proof. We handle the proof in several steps. In Steps 1-5, we assume that (V;)¢cjo, 77, (Vi)refo,7]
and (Vf’g)te[oﬂ exist and prove points (iii)-(v). Points (i) and (ii) are then checked in Steps 6-7.

Step 1. We first check that for x € (v, ),

sup E [elv‘lﬁ +elVil" 4 eIV:YCIN} < Cy.
(0,7

Let us for example treat the case of (V);co,7). We have

t "
(2.5) VT — oIVol _'_/0 /E[eVerA(e)(st)’ _ Vil :|]I{u<¢z(|v;v)}N(dsvdGadvvdu)'
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Taking expectations and using Lemma G40

E [dvf\“} e‘vo / ds/ ) 0)do | fs(dv)
/2 R2
B K [VE+A(6) —v)| e";l*‘) PY(VE - v|)}
<E [e‘v‘)lﬁ] + /t ds/ fs(dv)EWZ(W: — ]l 1"
0 R2

(—exTveznveizopy + CulVE| v 1= =2eCe7) .
But x4+ v — 2 < 0, so that for [V| > M, (v) := max{1, C|v|, [Cre®~I"I" /¢, ]/ ?=¥=1)} we have
—ex I is1vizcply + Ca([V] V)= 72 <0,
Changing the values of the constants, M, (v) < C,e+*I". Thus
t
E [dvﬂ"} <E {GWOIN} + CN/O ds /]R2 fs(dv)E [¢Z(|V; - U|)€|V;‘K]I{|Vse\gcﬁecmv\'ﬂ}ec'“‘vlm} .

Since now @) (|[V —v|) < (1 + V] + |v])?, we deduce that ¢7(|]V — v|)]I{|V|§C~€cK\vm}ecﬁh"m <
C,.eC+I"I"  whence

E [elvﬂ“} <E [e%l“} +C, /Otds | fo(@)E [elvsﬂ Ol < 0 4 O, /OtdsIE [elvsﬂ.

We finally used (L), that x < § and that Vy ~ fo. The Gronwall Lemma allows us to conclude.
Step 2. We now prove (iii), for example with (V,);c[o, 7). Using 3) and Lemma E4] we obtain

‘VO / ds /_ o 0)do 9 fs(dv)

E[ VErA@) V)| _ Vel ’W |Ve_v|)]

T
<Cy + CN/ ds/ fs(dv)E [¢z(|V; - U|)60~|vwec~|v;\“}
0 R2

E |sup Vel

[0,7]

T
<Cyx + C,i/ ds fs(dv)ecﬁ‘”“E [ecmlv;w} '
0

We used here that ¢z(|V—v|)eC“~|V|NeCN‘”|N (14 |V |+ |o])7eCrIVITCrIvl™ < eCrlVITeCrlvl™ - Step
1 and () allow us to conclude, for x € (v, d).

Step 3. We set
h(u,v,0,w) = A(0)(w — v)Ly<jw—vpy and he(u,v,0,w) = A0)(w — ) Tiu<p? (jw—o|)}
and we prove that for 8 € (0,1],

(2.6) /0 [(h = he)(u, v, 0,w)[Pdu < C|01°|w — 0| (' Tgju—v|<zer + W — V| Ljy—o|>T.-1}),

(2.7) /0 |he(u,v,0,w) — he(u,v,0,®)|Pdu < Cs|0|°TY |jw — w]°.
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We notice that |A(9)| < 16| (see (LZ)) and recall that ¢.(x) = z for x € [3¢, T — 1], that ¢.(z) < 3¢
for « € [0, 3¢] and that ¢¢(x) < x for x > T'c — 1. The left hand side of ([Z8]) is bounded by

1617w — U|ﬁ/0 | Tpusio—wy = Tuge? (o—wh| du
<101%|w — v|? |Jv — w[" = ¢7 (Jv — w])|
<161} = 0| (Tjuy—vi<sey + Lgjw—vizr,—1))|[w = 0|7 = 62 (jw — o)
[0 |w = 0] (Tgju—vi<3e} (36)" + Lfju—vizr.— 1w = v]7) -

Similarly, using Lemma B3 (i) and that ¢, < T, the left hand side of [Z7) is bounded by

~ 153 . .
101°](w =) = (@ = )| "7 (Jw = v]) + [0]°|& — 0|7 [§7 (Jw — v]) — ¢ (1@ — v])
<[0)|w — @|°T7 + Csl0) T ||w — | — @ —v||” < C56]°|w — @|°T7.

Step 4. We now prove (iv). Let thus 8 € (v,1]. Since z — 27 is sub-additive, we can write
t /2 o
B(ve-vee] < [as [ voan [ gao) [ duk [0,V ol 0.0,V
0 —n/2 R2 0
t /2 0o
+/ ds/ (1- I<(|9|))ﬁb(9)d9/ fs(dv)/ dul [|he(u,v,0, VEC)|P]
0 —n/2 R? 0
Using (1) and that 0 < 1 — I¢(|0]) < Tjje<cy, we get
t /2
BV = o] <cur? [as [ woyaslels (v - vep]
0 —7/2
t ¢
+Ca [ as [ sratlol [ g 6V = e — ol
0 —¢ R?
Using (A(y,v)), since 3 > v and since ¢ (|V — v|)|V —v|? < C(1 + |v|? + |V|?), this yields
t
B (Vi - Vo] <car? [ B (v - v ds
0
t
+ o™ s [ o) [1+ VS £ o]
t
SC’gFZ/ E[|[VE - VECP) ds + Cp¢PY,
0

where we used () and point (iii). The Gronwall Lemma allows us to conclude.

Step 5. Let us check (v), for some (3 € (v, 1] fixed. Using again the sub-additivity of z — 2,
EZBEZD), (A(y,v)) and that 8 > v, we obtain

t /2 00
E |V — V£ g/ ds/ b(6)d6 fs(dv)/ dul [|h(u,v,0,Vs) — he(u,v,0,VE)|?] .
0 —7/2

R2 0
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We infer from ZBET), (A(y,v)) and the fact that 3 > v that

E[|Vi — V£l <cg/ ds/ d9|9|ﬁ/ fs(dv)
—m/2

|V — ’U|ﬁ(67]1{‘v —v|<3e} T |Vs — ’U|V]I{|VS v|>T. ,1}) + 7|V — V6|B)

<CyePt / dsE [f,(Ball(Vy, 3¢))] + C5T? / dsE |V, — V]
0 0

t
+ Cg/o ds /]R2 fs(d’U)E [|‘/s — U|B+’Y]I{\VS—U\ZF€—1}H .

By assumption, we have

sup E [fs(Ball(Vs, 3¢))] < 3“Ke“.
[0,7]

Next (C7) and point (iii) yield, for x € (1/no, J),
S @E IV, VP Iy —pzr1y)] S/R2 Fo(dv)E [(IVs] + [o) " Ty 41021 - 13)]

<e T [ A B[Vl + o]
R2

<Che ™ [ fi(dv)E {ecm(lvs\ﬂv\)ﬁ} < CLe T
R2

Thus we have
t
E[[Vi = Vi) < Cp (7T +e7T0) + CﬁFZ/ dsE [V, — V7],
0

whence E [|V; — VE?] < Cp k(7471 4+ e71¢)e 1T by the Gronwall Lemma. We easily con-
clude, since £ > v and since I'f = [log(1/€)]"™, with kny > 1.

Step 6. We now prove point (i). First, the strong existence and uniqueness of a solution
(Vf’g)te[O)T] to (&) is obvious, since the Poisson measure used in ([Z4) is a.s. finite because since
I vanishes on a neighborhood of 0,

T
/0 /E]I{I<(\9\)#O,u§Fz}dSb(9)d9fS(dv)du < 00.

Similar arguments as in point (iv) allow us to pass to the limit as ¢ — 0 (recall that I-(|0]) —
Ifp+0y) and to deduce that there exists a unique solution to (V;):co,7) to ([Z3). Finally, we use
similar arguments as in point (v) to prove the existence and uniqueness of a solution (V;)c[o,7] to
&), by taking the limit ¢ — 0.

Step 7. Tt remains to show that V; ~ f; for all ¢ € [0, T]. To this end, we denote by g the law of
V;. Then gy = fy by assumption. Using the It6 formula for jump processes and taking expectations,
we see that (g¢):e[o,) solves the following linear Boltzmann equation: for all ¢ : R? — R globally
Lipschitz continuous,

/2
L hw) geldv) = / geldv) [ fidv.) / b(6)dBlo — v, [0+ AB) (v — v,)) — B(v)]
R2 R2 R2

—m/2
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Of course, (ft)e[o,) also solves this linear equation. Thus (g¢):efo,7] = (ft)teo,7) by @ uniqueness
argument. The uniqueness for this linear equation can be derived from the uniqueness of the
solution to ([II), by using the results of Bhatt-Karandikar [3, Theorem 5.2], see [9, Lemma 4.6]
for very similar considerations in a very close situation. O

3. SOME SUBSTITUTIONS

The Malliavin calculus we will use in the next sections concerns the solution (Vte’c)te[oﬂ of
E3). Since ¢ <T7 < 2I'7 (we will need a few scope), we can write

t pm/2 217

Vet =1 +/ / / / AWO)VES = 0)I(10) T, o (e _opyy N (ds, dO, dv, du).
0 J—m/2JR?2J0O - 5

Recall that the instensity measure of N is given by dsb(0)d6 fi(dv)du. Our goal in this section is

to modify this formula in order to get an expression in adequacy with [2]. First of all, we use the

Skorokhod representation Theorem to find a measurable application vy : [0, 1] — R? such that for

all ¢ : R? — Ry,

(3.1) /0 (oe(p))dp = /R (o) fuldv).

Next, we consider the following function G : z € (0,7/2) — (0, c0)

and its inverse 9 : (0,00) — (0,7/2) (i.e. G(¥(z)) = z) and we set ¥(z) = —)(—=z) if z < 0. Then
for all ¢ : [—7/2,7/2]\{0} — R,

/2
(3.2) ¥(0)b(0)dl = ¥(9(2))dz.

—m/2 R,
Notice that ¥ is smooth on (—00,0) U (0,00). Since b(f) ~ |#|~17" by assumption, we have
G(z) ~ vz — (n/2)7¥), and thus ¥(z) ~ (vz + (2/7)")" /¥ ~ (1 + z)~'/*. See Lemma G2
for some precise estimates.

Observe now that for all z € R,,
(3.3) [9(2)| > ¢ <= |z| <G(]).

We choose I in such a way that for Io(2) = I(9(|z])), Ic : R — [0,1] is smooth (with all its
derivatives bounded uniformly in ¢) and verifies I:(2) = 1 for |z|] < G(¢) and I.(z) = 0 for
|z| > G(() + 1.

We can write, using the substitutions § = ¥(z) and v = vs(p),

t 1 pG(O+1 por?

Vel = VO+/0 /0 /G AW(2))(VES _US(p))IC(Z)]I{ugqbzﬂV:f7vs(p)\)}M(dS’ dp,dz, du),
-G(¢)—-170

where M is a Poisson measure on [0,7] x [0,1] x R, x [0,00) with intensity measure dsdpdzdu.

These subsitutions are used for technical convenience: for example, it would have been technically

complicated to use a smooth version of l{jg>¢} (with ¢ small), while it is easy to build a smooth

version of Ty|.|>¢(c)y (with G(¢) large), see also Remark below.



REGULARIZATION PROPERTIES OF THE BOLTZMANN EQUATION 11

Consequently, there exists a standard Poisson process Jf’c =3 1> ]I{T€’<<t} with rate
> B¢ <

1 G(¢)+1 217
Aee = / dp/ dz/ du =4(G(¢) + NIY
0 —G(¢O)—1 0

and a family (R, Z0C, U ) kst of idd. [0,1] x [~G(¢) — 1,G(C) + 1] x [0, 2T7]-valued random
variables with law )\;édpdzdu such that, with the conventions Z? =0 and T§ < = 0,

S pe:C
Ve, Vrpe (R

Jec
Vf’C TVt ;A(ﬁ(zzﬁ)) (V;ggl — UT’:,( (RZ’C)> IC(ZZ)C)II{U“CQZW(
j— § - ‘

For t € [0,T], w € R?, (recall that ¢. < T.), define
1 1 G(O)+1
[ [ dse - o))
¢ JO —-G(¢)—1
1 1
~1- 515 | dpéi(u =il € [1/2.1)
e Jo

Consider a C* function y : R — [0, 1] supported by (—1,1) such that fil x(x)dxz = 1. Setting

gé,C(tvw) =1-

tecl00.2) = gt (= G(Q) = 3) + 2=l

)

Lz <ao)+1y

we see that for each t € [0,7], w € R?, g ¢(t,w, p, z)dpdz is a probability measure on [0, 1] x R,.
Since x(z — G(¢) —3) =0 for |z| < G({) + 1 and x(z — G(¢) — 3) > 0 implies |z| > G(¢) + 1 and
thus I (z) = 0, we see that for all k > 0, all ¢ : R? — R,

E [w (v;;i ) ] v;;i,T,:’ﬂT;fl}
k+1 k

! dpdz
_ €,¢ 67C_ v €,C _ P
_ / / (Ve + ADENVES — vy D) 07 ([ = g, (0)]) 5

1
= [0 (Vi ANV = v (D) 0 Ty Vi o

Consequently, we can build, on a possibly enlarged probability space, a sequence (RZ’C7 ZZ’C) k>1 of
random variables such that VOE’C =Vp and for all k € {0, ..., J}’C — 1},

VS = VS forall t € [T TS,

Jos
VTe,’;icl = 2 AZEN VS = vpes (RS )DL(Zi),
k=1

L ((Rz)il? Zl?fl) | V;gile?<7Tl§fl) = qe,C(leflvV;}’;caﬂaz)dpdz-

Observe that by construction, we have

Jee
VES = Vot Y AWZEN VS = vpec (REDT(Z)
k=1 -

for all t € [0, T]. The following observation will allow us to handle several computations.
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Remark 3.1. Recall that M(ds,dp,dz,du) is a Poisson measure on [0,T] x [0,1] X R, x [0, 00)
with intensity measure dsdpdzdu. For any v : [0,T] x R? x [0,1] x R, — R, any t € [0,T],

Je¢

Zw (T5¢ VTii LRSS, ZEOT(Z9°)

//// V(s Vi o () gy (v o oy M (A5, dps 2, du).

We conclude this section with the computation of the law of (R, Z{), ..., (RS, Z°)) .
Remark 3.2. We can write, for each k > 0,
Vs = Hi(Vo, (T, RYS Z5), s (T, RYS, Z19)),
for some function Hy : R? x (R4 x [0,1] x R,)* — R2. Indeed, set Ho(v) = v and
Hier1 (v, (b1, p1521)5 005 (Bt 15 P 1 2ki1)) = Hi(, (B2, 1, 20)5 s (B, s 28)))
+ A0 (zr41)) (Hi(v, (b1, p1,21), oos (B P> 28))) — Vtgss (Prg1)) Te(ZR41).
Conditionally on o(Vy, J©C,t > 0), the law of (R, Z5°), ..., (R;’C, Zf’c)) has the density

H qE,C(T]?C?Hk—l(%? (foC’ P1, 21)7 ceey (T]:flu pk—luzk—l))7pk7 Zk)7
k=1

with respect to the Lebesgue measure on ([0,1] x R,)*.

4. AN INTEGRATION BY PARTS FORMULA

The aim of this section is to prove the following integration by parts formula for Vf’c Clearly,
on the event {7} <> th, Vo ¢ = = VW, so that no regularization may occur. To avoid this degeneracy,
we consider (Z_1, Zy) with law M (0, I3) independent of everything else. We also introduce a C'>°
non-decreasing function ®, : R +— [0, 1] such that ®.(z) = 0 for x < T. — 1 and ®.(z) = 1 for
x > I'.. We may assume that the derivatives of all orders of ®. are bounded uniformly with respect
to € € (0,¢p). Finally, we consider a C* function ¥ : R + [0, 1] such that ¥(z) =1 for < 1/4
and ¥(x) =0 for x > 3/4. We set

(4.1) o (Vo) + Z‘I’ (|Ve g ‘) and G¢ = w(xO),
Observe that since supg 5 [Vio¢| = max{|V|, |V;é,< [y oo |qu’£c [}, we have
1 Jt
€,¢
(42) ]I{sup[o’t] \V;’C\Sl—‘e—l} < Gt < ]I{sup[o,t] |VS€‘<|§F5}'

Theorem 4.1. We set uc(t) := t¢**. For any v € C°(R:L,R), any 0 < to < t < T, any
k€ (1/n0,9), any ¢ > 1, any multi-index B € {1,2}19,

e (Ve () + v

In the whole section, ¢ € (0,1) and € € (0, ¢g) are fixed. We set for simplicity A = A ¢, T = T,:’C,
Ry = RZ’C, VARES ZZ’C, but we track the dependance of all the constants with respect to € and (.

< Corto e’ || W] |o [€79¢770 + e T2
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4.1. The Malliavin calculus. We recall here the Malliavin calculus defined in [2]. This calculus
is based on the variables (Zy)r>1 (they correspond to the variables (Vi)r>1 in [2]). The o-field
with respect to which we will take conditional expectations is

g - U(V07Tk7Rk7k 2 1)

The calculus presented below is slightly different from the one used in [2]: there one employes as
basic random variables (R, Zx)r>1, while here we use only (Zj)r>1. This is because we have no
informations about the derivability of the coefficients of the equation with respect to p. We also
notice that our coefficients depend on time, but since the bounds of the coefficients and of their
derivatives are uniform with respect to time, the estimates from [2] hold in our framework.

Recall that (Z_1, Zp) is independent of everything else and N (0, I2)-distributed. We set
Z,=(Z_1,20,21,....27,).

We now use Remark Conditionally on G, the law of Z; has the following density with respect
to the Lebesgue measure on R? x (R,)”t: setting z = (2_1, ..., 2.7,),

sy 2zl 2
Pec(z) = Wee™ 2 H Ge,¢(Thes Hie—1 (Vo (T, Ra, 21)s ooy (Th—1, Ri—1, 26-1)), R, 1),
k=1
the normalization constant
Ty -1
Wt = (27‘(/ , [H Qe,cj(Tk, kal(V(), (Tl, Rl, 2’1), ceey (kal, kal, Zkfl)), Rk, Zk) le...dZJt>
0,17 | =1

being G-measurable.

We denote by U : R, +— [0,1] a C°° function such that Us(z) =1 for |z] € (1, G(¢) — 1) and
Uc(z) =0 for |z| <1/2 and |z| > G(¢) — 1/2. We may of course choose U in such a way that its
derivatives of all orders are uniformly bounded (with respect to ¢). Then we define

m_1 =7y =1, FkZUC(Zk), k>1.

Remark 4.2. Notice that 7, is smooth with respect to Zy and that all its derivatives are bounded
uniformly with respect to (. This is the reason why we used the substition 8 = ¥(z) in the previous
section.

A simple functional is a random variable F' of the form
F= h(wa (Zflv ) ZJt)) = h(wv Zt)

for some ¢t > 0, some G-measurable & : {(w,2),w € Q,z € R? x (R,)”*“)} = R, such that for
almost all w € Q, for all k € {—1,..., Jy(w)}, z — f(w, 2) is smooth with respect to zj on the set
7, > 0. For such a functional we define the Malliavin derivatives: for k > —1,

DkF = Wkazkh(w, Zt)

Remark 4.3. We notice that Remark [ ensures us that Vf’g is a simple functionnal for each
t € [0,T]. Indeed, Hy, is smooth with respect to z; for 1 € {1,....,k} on {z € (—=G(¢),0) U (0,G(¢)),
which contains {m > 0}. This explains our choice for m.

Observe that if F' is a simple functional, Dy F is also a simple functional (in particular because
the weights 7, are smooth functions of Z). Thus for a multi-index 8 = (kq, ..., k) with length
|B] = m, we may define

DPF =Dy, ..Dy F.
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For m > 1, we will use the norm

|Flm=|FI+ > |D°F|.

1<|Bl<m

Given a d-dimensional random variable F' = (Fy, ..., Fy) we set |F|,, = Zle |F3l,,- The Malliavin
covariance matrix of F' is defined by
Jt
o"I(F) = > DyF, x DyF;, 1<i,j<d.
k=—1
Finally, we introduce the divergence operator L: for a simple functional F',

Jt
1
LF = — E |:—Dk(7TkaF>+DkF X Dk logps_’g(zt) .
p—_1 LTk

We now are able to state the integration by parts formula obtained in [2, Theorems 1 and 3],
of which the assumptions are satisfied. Let G and F = (Fy, ..., Fy) be simple functionals. We
suppose that deto(F) # 0 almost surely. Then for every ¢ € C°(R% R) and every multi-index

B=(p1,....0y) € {1,...,d}7, we have
(4.3) E (056:(F)G) = E(B(F)Ks,(F,G)).
with the following estimate:
|G|, (1 +|F], )" z !
4.4 Kz ,(F,G)| <C, a ot 1+ LF|,
(44)  |Kpa(P.G) < Cpa—t sty 2> [lier

J=1 kit..+k;<q—ji=1

4.2. Lower-bound of the covariance matrix. The aim of this subsection is to show the follow-
ing proposition. We denote by I the identity matrix of May2(R). As we will see below (see Subsec-

. . . . Z_ . . .
tion EE4), the Malliavin covariance matrix of 4/uc(t) ( Zol) + V¢ is nothing but u¢ (£)I + o (V).
Proposition 4.4. Recall that uc(t) :=t¢*. Forallp>1, all0 <ty <t <T,

E {(det [udt)[ + U(Vf’C)D_p] < Cyy peCrte .

.....

Moy (R), we write [T,_, My = M;...Mj.
Lemma 4.5. Let (Y;)icj0,1) be the Mayo(R)-valued process defined by

Jt
Vi = [T [T+ A@(Z))Ic(2)]  (with Y =T if J; = 0).
k=1
This process solves

Ji
Yo =1+ AW(Zi)(Z)Yr,_,
k=1

and Yy is invertible for all t € [0,T], because I + A(0) is invertible for |0] < w/2. Set, for k > 1,
Hy, = 0 (Zi)A'(9(Z0)) (V1S = v, (Ry)).
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Then for k > 1, for ¢t € [0,T],
¢ —1
DVt = m Yy Yy Hipli>r, .

Proof. Since V¢ and Y; are constant on [T}, Tj11), it suffices to check the result for VTejic, for all
j >0, that is, on the set m > 0 (i.e. |Zx| € [1/2,G(¢) — 1/2)),

; -1
0, Vi® = Y1, Yy, Hyljzi.
Since V:,ff does not depend on Zj if j < k, the result is obvious for j < k. We now work by

induction on j > k. First, V5;° = Vi* + A(W(Zk))(Ve | — vr (Rk,))Ic(Zy). Derivating this
formula with respect to zi yields (recall that |Zx| € [1/2, G(¢ — 1/2)] and thus I.(Z;) = 1),

0., V5" =0 (Zi) A (0(Z1,)) (V5 | — v, (Ri)) = Yo, Yq, " Hy.

We now assume that the result holds for some j > k and we recall that due to Section B, VTejﬁl =
Vi + AW(Z540)) (V5 = oryy (Rj1))Ie(Zy41). Hence
02 VS, = (I + AW(Zj11)1c(Z41)) 02, Vi
= (I + A((Zj+:1))Xe(Zj1)) Yo, Yy, Hy = Yy, Yo, Hy,
as desired. |

We deduce the following expression.

Lemma 4.6. For all t € [0,T], o(VS) = Y,8,Y;, where
Sy = Zw Y UHGHE (YR )™
Proof. Due to Lemma EC0 we have

Jt Ji

o(VE) = md (VY5 Hy] VYR H] =Y, <Z w,zYTlekH,j(YTkl)*> Yy,
k=1 k=1

whence the result. O

Next, we prove some estimates concerning (Y;)¢ejo,7]-

Lemma 4.7. Almost surely, for allt >0, |Y;| < 1. Furthermore, for all p > 1,

E |sup [Y; 7| < exp(Cpl?).
[0,T7]

Proof. First, an immediate computation shows that

1 0
T+ A@F = sup (7 + A@)e? = 70 <
|€l=1

so that |Y;| < 1. Next, one can check that for 6 € (—7/2,7/2),

(I +A@B) ') = <1+ 62 <exp(h?).

1+ cosf —
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Thus for 0 <t < T,

Ji Jr
VP <TI0+ A@(Z0)Te(Z)) P < exp <Z ﬂQ(Zk)Ic(Zk)> =: exp(Lr).

k=1 k=1

We infer from Remark Bl that for some Poisson measure M with intensity measure dsdpdzdu,

LT—/ /// LD g vt —o,(pyy M (A5, dp, dz, du)
//// |]I{u<rw}M(ds dp,dz, du).

Hence for any p > 0,

E fexp(pLr)] < exp <r3T [ e 1>dz> < exp(C,TTY),

*

since ¥?(2) < (7/2)* and since [, 9*(z)dz = fﬂﬁQ 62b(0)df < oo by B2) and (A(y,v)). a

To bound S; from below, we need a lower-bound of f;. Recall (B).

Lemma 4.8. One may find ro > 0 and qo > 0 such that for any w € R?, any t € [0,T],

1
fel{v, v —w| = ro}) = / L 1o, (p)—w|=ro} 4P = o-
0

Proof. Recall that by (), we have [p, [v]?fi(dv) = eg > 0 and [, vfi(dv) = 0. First, we observe
that for all w such that |w| > v/2eg + 1 =: a, we have

fel{o,lv —w| 2 1}) > fi({v, o] < Jw| =1}) =1 = fi({v, [v] > [w| = 1}) > 1 = eo/(|w] = 1)* > 1/2.

Thus it suffices to prove the result for (¢,w) € [0,T] x Ball(0,a). We notice that for each ¢ > 0,
ft is not a Dirac mass. Indeed, since fR2 vfi(dv) = 0, the only possible Dirac mass is dp, but this
would imply [p. [v]?f¢(dv) = 0.

As a consequence, we can find, for each (t,w) € [0,T] x Ball(0, a), some numbers r;,, > 0 and
qiw > 0 such that fi({v,|v —w| > riw}) > qw-

Now we prove that for each (¢, w) € [0,T] x Ball(0,a), we can find a neighborhood V; 4, of (¢, w)
such that for all (¢, w') € Vi, fr({v,|v —w'| > 140/2}) > qrw/2. To do so, we first observe
that it is clear from Definition [Tl that ¢ — f; is weakly continuous. Hence for all continuous-
bounded function ¢ : R — Ry, (t,w') — [z o(|w' — v|)fy(dv) is continuous. Consider now a
continuous-bounded nonnegative function ¢ : Ry — Ry such that Tg,>,, 3 < @ < Tgesp, 2}
By continuity, there is a neighborhood V, 4, of (¢,w) such that for all (#,w’) € V; 4, there holds
Jgz o(|w” = v]) for(dv) > 5 [z @(lw — v]) fe(dv), which implies

Folfo, o = '] > 0 /2)) 25 Filfo o~ wl > r}) 2 g2

Since [0, T] x Ball(0, a) is compact, we can find a finite covering [0,T] x Ball(0,a) C Ul V4, w;-
We conclude choosing 79 = min(r¢, v, /2) A1 and go = min(gy, »,/2) A (1/2). O

We carry on with some basic but fundamental considerations.
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Lemma 4.9. For £ € R?, X € R?, consider
16, X) = {0 € [=m/2,7/2], (&, (I + A©) 7 A(0)X)" = 6*|X ¢ /128}

For any &, X € R?, we always have either (0,7/2] C 1(¢,X) or [-7/2,0) C I(£, X).

Proof. We may assume, by homogeneity, that | X| = |{| = 1. We have

1 [ sin? @

4 | (14 cosh)?

Since (X, PX) = 0 and |X| = |¢| = 1, we always have either (¢, X)*> > 1/2 or (€, PX)* > 1/2.
Thus for all 6 such that (£, X) (£, PX)sin@ < 0 (this holds either on [0,7/2] or on [—7/2,0]),
sin? 0 sin? 0
(1+ cosf)?’ } - 32
We easily conclude, since |sinf| > |0]/2 on [—7/2,7/2]. O

sin 0

2 2
(£, X)" + (¢, PX) —2m

(6.1 + A0) A (O)X) = (€. ) <§,PX>} |

(6, (I + A0) A (0) X)) > émm {

We deduce the following estimate.

Lemma 4.10. There are some constants ¢ > 0, C > 0 such that for all £ € R%, all t € [0,T],
Elexp(—€*5,€)] < Cexp (—ctl|¢]/ @) n ).

Proof. Recalling Lemmas B3 L6 the definition of 7, and using that Y7, = (I + A(Y(Zk)))Y1,_,
on 1 > 0 (because 7, > 0 implies I¢(Zx) = 1), we see that

Jt

Ji 2
8= mt (Vi €)= > m (T4 AW(Z4) " Hi (Vi )°€)

k=1 k=1

J 9
> Z Iz, jen/2.6(0)-1/2) (V' (Zk))? <(I + AWD(Z))) A D(Z)) (VS | = o, (Rk))7§Tk—1> ;
k=1
where & := (Y, 1)*¢. We observe that a.s., |&| > || because |V;| < 1 by Lemma BTl We splitted
Y, = (I 4+ A(W(Zk)))Yr,_, in order to make rigorous the stochastic calculus below ({7, , will be
predictable). We recall that ro and go were defined in Lemma L8 Thus, due to Lemma 9,

Ji
€48, > ; ]I{\Zk\6[1/2,0(4)—1/2]}]I{ﬂ(zk)el(&kil7VTe,k<717%(&))}][{%&,;717%(&))‘2%}
_ (2B,
128
2,2 Jt
> |§1|2;o ; L zen/zco-vm p@oeren, ,vis —or, ro)
% ]I{IVE’C —ka(Rk))\zro}(19/(Zk))2192(zk)

Ti—1

€1%r8 /t/l/ /°° YRVIINY:
L) 92(2)(9'(2))2 1y, L ond ey
128 Jo Sy S Jo ()" () Njz1ensz.c0 -1/ Lpyere. vet—o ()

I I M(ds, dp, dz, du),

{IVES —vs(p) |20} Hu<o (VS —va(p)])}
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where M is a Poisson measure on [0, 7] x [0, 1] X R, x [0, c0) with intensity measure dsdpdzdu. We

used Remark Bl Since ¢7(z) > ] for x > ro we get £*5:§ > ‘51‘280 L, where

2
Ly -—/ / // 0( N Lzien/zc-1/2 Lgyere, ves —o (o))

Liu<ryy M(ds, dp, dz, du).

Lvec vu(o)12ro}

Using the It6 formula for jump processes, taking expectations and differentiating with respect to
time, we get, for x > 0,

d 7mLt 7mLt —z92(2)(9 (2))?
7 = / / / 1 — e o W) )11{|z|e[1/2,a<<>—1/2]}

H{ﬂ(z)em&,v:‘—m(p))} Lvec vy zroy Tusrg }} dudzdp.

The integration with respect to u is explicit. Using Lemma O we see that the set {¢(z) €

I({},Vf’c —v(p))} a.s. contains {¥(z) € (0,7/2)} = {z € (0,00)} or {¥(z) € (—7/2,0)} = {z €
(—00,0)}. Since (99')? is even, this yields

dpfetg <oy [ [0 et (1o e OO b i
dt = %o Jip (VS —vi(p)] 2 ro}

Finally we use Lemma to deduce

G(¢)—1/2 ,
th [ 7th} <— <qu0/ (1 . 671192@)(19 (z))2) dz) E [efﬂﬂ )
1/2

Since Ly = 0, this implies

G(¢)-1/2 2t 2
E [e_IL‘} <exp —trgqo/ (1 — 7@ (W) )dz .

1/2

Recalling that £*S:¢ > |£1|;;§ L, we get

G(¢)—1/2

Elexp(—£*S:€)] < exp (—trgqo/ (1 — e*|§|2r§192(z)(ﬂ’(z))2/128) dz) _
1/2

We observe that due to (A(y,v)),
GO = 1/22 (¢ = (7)) = 1/2 > (™

for ¢ > 0 small enough. By Lemma B2 we have 92(2)(0'(2))? > ¢(1 + 2)"4*=2 > cz=4/¥=2 for
z > 1/2. We thus have

047'/ 2 —4/v—2
@M&&mémp—w%/ (1= el ) gz ).
1/2

But for z < [¢[/+), we have [¢[22~#/¥=2 > 1, whence 1 —e~¢l¢" ™"

>1-
[exp( ' Stf)] < exp (—Ct ((CC_V) A |§|V/(2+IJ) ))

The conclusion follows. O

~¢. Consequently,
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We are finally able to conclude this subsection.

Proof of Proposition {4 We recall that due to [ p 92], for all p > 1, there is a constant C}, such
that for all nonnegative symmetric A € Mayo(R),

|det A|7P < C,,/ €| P2 Al g,
£eR?

We set dy = det(uc(t)] + (V). Using Lemma BB, we have o(V,°¢) = Y,5,Y}*, whence d, =
det?(Y;) det (ue (£)(Y;Y:) ™! + S¢). Lemma B and the Cauchy-Schwarz inequality yield

E[d;p] <E [det(}/t)_2p det (’u,(:(t)(}/t*}/t)_l + St) _p]
SeCPFZE |:d€t (uc(t)(Yt*Yt)_l + St) *2;0} 1/2 .

Thus due to ([EZ) and Lemma B0 since £*(Y;*Y;) 1€ = |(Y,1)*¢)? > [€]? by Lemma BT,

1/2
E[dt_p] < CpeCPFZ </ |§|8p—2e—u<(t)|€|2E {e—ﬁ*stg} df)
|€|€R2

1/2
< Cperl ( /}E €52 exp (—uc (DIl — et/ A ) dg)

1/2
=Gt </£ R? € exp (_Ct|§|y/(2+y)) d§> '
€

To get the last inequality, observe that if |€|*/(+¥) > (=¥, then [¢]2~*/(2+¥) > (=%=¥ 50 that
ug (£)[€[* =tV IE[? = ¢tV | P ) > g ),

Thus for 0 <ty <t < T, we have
E[d, *] < Cyy pe?"*
as desired. O

4.3. Upper-bounds of the derivatives. This subsection is devoted to the following estimates.

Proposition 4.11. For alll > 1, allp > 1,

L|P Cy pT?
E <]I{Sup[0,T] Ve |<r.} Sup] |VE C|l> < Cppetrte,

[0,T
E(1 Lvesp | < o,
{suppo. 1y [VECI<T} [SOU%)] |LV |z > Cip ep(+1) Cvp”

Proof. We will use the estimates from [2, Section 4]. In [2], the coefficients are bounded. But,
as long as we are on the set {supjy 1 }V;*g} < T.}, we do not need to take a supremum over all
w € R2. For a function ¢ = [0, 00) x R?x [0, 1] x R, +— R (or — R?) which is infinitely differentiable
with respect to z € R, and to w € R?, we set, for € € (0,¢), [ > 1,

DLt p,2) == sup Z 1080k (t, w, p, 2)|.
{‘w‘SFG}OS\LﬂquSl
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Let e(t,w, p,2) = AW(2))(w — vi(p))c(2), for which sup, cgs [Vuelt,w, p, )| = [AW(=))Te(2)
Due to [, Lemma 7], we know that

o €,C
Yi0) =gy vz SR IVl
Ji Ix1!
. _ Ix1!
S][{sup[o,ﬂ \V;’C\SFé}sup“/87<| +Ci |1 +Zci(Tk7RkaZk) sup (85) * )
[Ovt] k=1 [O)t]
where

Jt Jt
E=1+C Y |AW(Z))c(Zr)Er,— = [[ (1 + CHAW(Zk) 1e(Z)).

k=1 k=1

First, we prove exactly as in Lemma EE7 that for allp > 1, 0 <t < T,

E
[0,2]

sup Sf] < eCral

Due to Lemma [E2 since |A(6)| < |6] and since the derivatives of I are bounded uniformly with
respect to ¢, we have ¢.(t, p, z) < Ci(1+ [2]) "V (Te + |ve(p)]) < CiT (1 + |2]) V7 (1 + Jve(p)]). We
thus have, using the Cauchy-Schwarz inequality,

7 2pixil7 1/2
E[Yi(t)"] SCpT¢ + Cpae“r T TEVE | 1+ (Z(l +1Ze) T (1 + o, <Rk>|>>
k=1
<Cp1eE {1 + Xfplxu] v )
where X; := i;l(l + 1 Ze])~ Y7 (1 + |vr, (Rk)|). We now prove that for any p > 1, E[X}] <

Cpecprz, which will end the proof of the first inequality. Using Remark Bl one may find a
Poisson measure M on [0,T] x [0,1] x R, x [0, 00) with intensity measure dsdpdzdu such that

t 1 00
Xt:/o/o//o (L 1D+ sy o oy e ()M (s, dp. iz, )

t 1 00
<[] [0 0 o)) Wy M(ds. di ) =
0o Jo Jr.Jo
A simple computation shows that
t 1
B <12 [ s [ap [ aE [+ 1 D)) - 2]
0 0 .
¢ 1 )
gcprz/ ds/ dp/ dz(1+ |2)) "7 (1 + |vs(p))E [1+X§+|vs(p)lp]
0 0 .
Since [, (1+ |2[)7"/dz < oo and since fol lue(p)|9dp =[5 [v]2fi(dv) < C, for all ¢ > 1 due to

(D), we conclude that E[X?] < C,T'7 [ E[XP]ds + C,T'7, whence E[X?] < C,T7e%™7 < C,eCrl?
by the Gronwall Lemma. This ends the proof of the first inequality.



REGULARIZATION PROPERTIES OF THE BOLTZMANN EQUATION 21
We now prove the second inequality. We use [2, Lemmas 11 and 12]. We introduce the functions

1 1 1
= [t [ ol (w—ulo)) = 1= 52 [ dp 62w - o)),
¢ Jo R e Jo

h(tv w, p) = ¢Z(|w - Ut(p)D'
Then by [2, Lemma 11], for k =1, ..., J;,

g(t,w)=1-—

—+1
\LZy|, < Cl((log R, (Te, Ry)

Ji
. T — 41
VeSS o), (1) + Do), (1, 1)),
’t j=k+1

Making use of Lemma B3} (ii), one easily checks that (log h)l (t,p) < Cie~! and that that for any
multi-index ¢ = (q1,....q) € {1,2}, [0Lge(t,w)| < CiT*e'!. Hence, using the Faa di Bruno
formula (BJI) and the fact that g. (¢, w) 2 1/2,

(logg)le(t) < et
Thus for k=1, ..., J;,

+1
|LZk|l < Ole_l_l <l—|—sup|V;’C|l+1> (l—l—Jt).

)

We now infer from [2, Lemma 12] that

I+1
sup |LVES], < O <1+ sup |sz|l> <1+Z Tk,Rk,Zk>
=1

[0,¢] [

1+1
x | 1+ sup |V;’C|§ﬁ sup ELH1
[0,1] [0,¢]

Using the above estimates, we can upperbound supyg 4 |LVES|, with

T4 I+1
Cre 71 4 0y) (1 +sup |V© <|l(f11 HB)) (1 +TI. Z [HZK)|(1 + |og, (Rk)|)> sup £+
[0,¢] k=1 [0,t]

Thus using the Cauchy-Schwarz inequality and similar arguments as in the proof of the first
inequality, we get

E |sup [LVEC|P /2
[0,t]
Recall now that .J; is a Poisson process with rate A = A ¢ = 4(G(¢)+1)I'Y < CTY¢™ by (A(y,v)).
Hence E[J}] < Cp(Ae,cT + (Ae,cT)P) < CpI'7P(7P. The second inequality follows. O

< Clypefp(lJrl)eCL,pFZE [+ Jt)Zp}

4.4. Proof of the formula. We prove a final lemma to compute the norm of GE’C

Lemma 4.12. Recall {{1). For alll >1, allt €[0,T],

Gl < il U Wiy v, -1y (14 ) (sup [V )

e.C
0,6 Vs " I<Te} (0,1]
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Proof. Using [2, Lemma 8], we have

Gl < 1GET + G <{k sup }|‘1’(k)(2§’4)|> i
By definition of ¥, we see that supg_; (W) (2)| < Cl{1/4<0<3/ay. Next we observe that
by definition, ¥¢¢ € [1/4,3/4] implies suppo 1 [Vo¢| € [Fe — 1,T]. Recalling ([EZ), we only
have to prove that |25, < Cy(1 + Ji)(supgo 1 VECl)). But of course, IZEC), < 1@ (Vo) +
ZlJt |<I>€(|VT€);<|)|1 < (14 Ji)suppg g [@c([VES)i- Tt only remains to check that for all s € [0, 7],

|D(|VE) < CIVES|L. But this is an immediate consequence of the chain rule (see [2, Lemma
8]) and the fact that v — ®.(|v|) has bounded derivative of all orders, uniformly in e. O

Finally, we have all the arms in hand to give the

Proof of Theorem [I.1] We apply 3] with
€, / Z—l €,
‘/t<+ UC(t)<ZO>, G':G(ifC
We first notice that for k > 1, DpF = Dy V", that D_F = \/u¢ < > and DoF = \/u¢ < )

_ ryed LZ
We also have LF = LV,"> 4+ \/uc¢(t) ( L7

that Dy(LZo) = M=o and thus so that D;Dy(LZy) = 0. This yields |LZo|; = 1+ |Zy|.- By the
same way, [LZ_1|; = 1+ |Z_1|. Since u¢(t) <1,

). A simple computation shows that LZy = Zj, so

Fli < G+ VoL, [LFl S 24|Za| + 20| + LV and  o(F) = uc(t)] + o (V).
Using E3HED), we deduce that for 5 a multi-index with length g,
B [050(P)G5) | < CRIKa I
where

1G5 g (1 + supg g [Vi|g1) 12 a ! .
O el LD DENED DI | (RS FATERVARSAAN)
(det(udt)[—l—a(Vt )3 G=1ky+...+k;<q—j i=1

€, 2
<C 1 . (1 + supg 4 |V; <|q+1)13q+q
- P IEEIEE (det(ug (1)1 + (V1))

q J
S LD DD DR | (CEAVAIER VAR IAGRIY

G=1 ky+...4k;<q—ji=1

q
(1 I Ly \V:’<|zrefl})

due to Lemma Using the Cauchy the Cauchy-Schwarz inequality, we obtain

E[Kp.) < Coli I 1514,
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where

L =E|1 .
1 {Sup[o,t] Vs YC‘SFe}

r 1/4
I = E [ (det(uc ()T + o(V))) ~*Co]
} 1/4

1/4
€ 2
(1 +?SII])|V;E gy ) 130t )] :
t

)

I 4
I3 =FE _1 + th]I{SUP[o,t] VeS| ST -1}

1/4

q J
L=E|1+Y > JI@+1Z-l+12|+ |L%€7<|ki)4][{sup[0,t] VoS I<r.}
j=1ki+...+k;<g—j1=1

Making use of Lemmas EE4 and EETTl we immediately get, for 0 < to <t < T,
L < C'quqFZ and Iy < Ctoﬁqec‘?rz.

Recall now that J; is a Poisson process with rate 4'7(G(¢) + 1) < CT?¢™Y, so that E[JF] <
CpIYP¢~"P for all p > 1. Using Proposition EZI}(iii) with some 1/n9 < k < ¢, and the Cauchy-
Schwarz inequality, we obtain

1/8
sup |V;’<| >T, — 1]

5] 1/8
I3 <C, + C,E [Jt ‘1} P
[0,2]

1/8
<Cy + C T T )E supe”V:ﬂ < Oyl + ¢,

[0,¢]

Finally, using Lemma ELTT] we see that for j =1,...,qand k1 + ... + k; < ¢ — j,

‘ 1/4
J
i lH@ 2]+ 20+ ) T, w;qge}}
=1

. . , 1/(49)
<TIE[@+ 12001+ 120l + 1LV ) | ves s
i=1
i ) ; 1/(44)
: 6,C14j 1/(49) c, T ’ —4jv_—4j(ki+1)
=Cq HE [1 + LV ]I{SUP[O,t] |Vs€’<|§1“e}] < Gy H(l +¢ € )
i=1 i=1
; 1/(45)
chquFZ HC—4JV€—4j(ki+1)] < quCszC_jVe—q < quCszC_qu—q’
i=1

whence I < qucqrzg“_q”e_q. All this yields
B[] € Cryuqe O eI (H16720) < Oy g O (06 4 (20T

For the last inequality, we used that T'c = [log(1/€)]™ and that ynmy < 1 < k. Theorem BTl is
checked. 0



24 VLAD BALLY AND NICOLAS FOURNIER

5. CONCLUSION
We now wish to end the proof of our main result.
Lemma 5.1. Assume that for some « € [0,2), some K > 0, for all € € (0, 1),

sup sup fs(Ball(vg,e)) < Ke®.
[0,T] vo €R?

Then forn € (0,1 —v) andp > 1, for 0 <to <t <T, for e € (0,e0) and ¢ € (0,1), for ¢ > 1, for
all ¢ € R? with €] > 1,

F©)] = [E [ €] | < Cotoump [16174e7171¢™9 4 PC720) 4 g T4 1 el 7].

Proof. We have |ﬁ(§)| =|E [ei<5>vf>]} by Proposition EI)-(ii). We set X¢ := Vue(t)(Z-1, Zy) for
simplicity and write

e <[efe ””—WME[E Vi) e )] [ [eleni ) — iterie o]

+ |B [V XD (1 - 6r9)] | + B [eler X gpe] |
=:A; + ... + As.

First, we Theorem EI] with (v) = €*¢*) and the multi-indexes 3; = (1,...,1) and £ = (2,...,2)
with length ¢, for which 0§ v (v) = (i€1)7eH&) and 98, 0(v) = (i&2)%e* &) For any k € (1/10,9),

As < Cyrr €] 77€CTE (79T + ¢T29e7T0) < Ot mpl€] 71T 797N + (T HEP),

because I'e = log(1/¢e)™ and yng < 1 < kno. Next, by [Z) and Proposition BT} (iii),

Ay <P [sup V78 2 Te = 1] < Cre™ @D < gevtaty,

[0,7]

We could have chosen any other positive power of e. We also have, since |e?(&®) —eH&v)| < |¢||z—y],
A5 < IEIE [1X51] < Clélyfuc(t) < Clele 2.

Proposition ZZIH(iv) (with 8 = 1) implies

Az < JEJE [V - V|| < Clele™ ¢ < Gylelec
Finally, we notice that for 8 € (0, 1],

61462 — 69| < minlelfe — 91,2) < 2*Plel o — oI
Hence using Proposition EXIH(v) with f = v + n (which is smaller than 1),
Ay < 2P | VE — Vi|P] < O ] tmertntrteagCall

which we can bound by C,|{[* """t F* as usual. To conclude the proof, it suffices to notice that
we obviously have e’+o+7 < |g[vHnev Tty and |€[¢2H/2 < |gle ¢, O

Next, we optimize the previous formula.
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Lemma 5.2. Assume that for some « € [0,2), some K > 0, for all € € (0,1),

sup sup fs(Ball(vg,€)) < Ke®.
[0,T] vo €R?

Assume that v € (0,1/2) and that v > v?/(1 — 2v). Define
a+y)(1-2v) —v?
g = Lt =) |
(a+y+v—-1pr+1
Then for all v € (0,p(c)), all 0 < tg <t < T and all £ € R?,

1F(6)] < Craolél ™

Proof. We can assume that || > 1, because f; is a probability measure, so that ||ft||OO =1. We
use Lemma Bl with € = [£|7¢ and ¢ = |¢|7?, for some @ > 0, b > 0 such that a +vb = 1 — 7y,
for some small 71 € (0,1) to be chosen later. We thus get, for some small 7 € (0,1 — v) and some
large p > 1, ¢ > 1 to be chosen later, for all || > 1,

|ft(f)| <C toump (|§|—¢Z+a77+(a+1/b)q + |§|—q—ap+2uqb + |§|u+n—a(u+7+a) + |§|1+an—b(1—u))

=Cytomp (|€|—mq+an + |€|—q—ap+2q(1—n1—a) + |§|V+n—a(l/+v+a) + |€|1+an—(1—n1—a)(1/l’—1))

<Cytomp (|€|7mq+1_|_|§|qfap+|€|V+nfa(u+'y+a)+|§|1+a(77+1/l'*1)*(1*771)(1/1'*1))_

We used here that 0 < an <1and 1 - —a < 1. Let now r € (0,p(a)). It remains to show that
one may find g > 1,p>1,1m €(0,1), n€ (0,1 —v) and a € (0,1 — 1) in such a way that

(5.1) mq—1=>r,

(5.2) ap—qz=r,

(5.3) aw+y+a)—v—nzr,

(5.4) 1-m)Q/v—1)—-1—an+1/v—1)>r

It suffices to show that (B3) and (&) hold for some n € (0,1 — v), some 7; € (0,1) and some
a € (0,1 — ;) small enough. Indeed, it will then suffice to choose ¢ large enough to get &1l and
then p large enough to obtain (&2). Hence it suffices to check that there is a € (0,1) such that

av+vy+a)—v>r and 1/v—2—a(l/v—1)>r
But setting a = (1 —2v +1%)/[1 + v(v + v + o — 1)], we get
av+y+a)—v=1/v—2—a(l/v—1) =pa) > r.

To conclude the proof, it only remains to check that a € (0,1). Clearly, a > 0. To check that
a < 1, it suffices to prove that 1 — 2v + v? < 1 + v(v — 1), which always holds for v > 0. O

The last preliminary consists of studying the function o — p().

Lemma 5.3. Assume that v € (0,1/2) and that v > v*/(1 — 2v).

(i) The map o — p(a) is increasing on [0,00). The function o — p(a)/a is decreasing on
(0,00) and p(ay,,)/a~,, =1, where a.,, was defined by (LA).

(i) Furthermore, we have, recalling (L0)

o>l = a,,>1 <= v<l1/3andy> 2v+20%)/(1-3v),
Gy >2 = a,,>2 < v<l1/4dandy> (6v+30%)/(1—4w).
Observe that ¢y, = p(2 A ay,y).
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(it1) For g € (0,¢y,,), one may find ng > 1 and 0 = ap < au < ... < ap, such that for all
ke {0,...,n0— 1}, a € [0,2) and apt1 < playg), with furthermore an, > q, all these quantities
depending only on q,~,v.

Proof. We start with point (i). To show that p is increasing, it suffices to note that its derivative
is positive if and only if (1 —2v)[(y +v — D)v + 1] > v[y(1 — 2v) — 2], ie. 1 —3v +3v% — 13 > 0,
which always holds for v € (0,1). We also have

pla) 1—2v (1 —2v) —v?

« av+[(y+v—1r+1  a2v+al(y+v—-1v+1]

which is obviously decreasing, because under our assumptions, 1 —2v > 0, v(1 — 2v) —v? > 0 and
(v+v—1)v+1>0. Next, a,, > 0 is designed to solve vaZ , + v(y +v+1)a,,, =~v(1—2v) - 1?2,
whence
play,,) ay (1 =20) + (1 —2v) — 12 _
Ay va2 , +v(y+v+1)a,, + (1 —2v)a,, '

We now prove (ii). Due to (i), we clearly have a,, > 1 if and only if p(1)/1 > 1, ie. [(1+
¥)(1=2v) —v?]/[(y+v)v+1] > 1, which is equivalent to v > 1/3 and v > (2v+21?)/(1 - 3v). By
the same way, a,,, > 2 if and only if p(2)/2 > 1, ie. [(24+7)(1 —2v) —V2|/[1 +v+v)v +1] > 2,
which is equivalent to v > 1/4 and v > (6v + 3v2)/(1 — 4v). Next we note that we always have
¢v,v = p(ay,, A2). Thus we have a,, > 2 if and only if p(2)/2 > 1 if and only if ¢,,,, > 2. Similarly,
ay, > 1if and only if p(1)/1 > 1 if and only if ¢, , > 1.

Let us now check point (iii). We fix ¢ € (0, ¢y,).

We first assume that a,, < 2, whence ¢, = a,,. We fix ¢’ € (¢,¢y,,), we observe that due
to (i), p(¢’)/¢’ > 1 and we consider nn > 0 such that (1 —n)p(¢’)/¢’ = 1. Then by (i), we deduce
that the sequence ag = 0, ag41 = (1 — n)p(ay) takes its values in [0,¢'] C [0,2) and increases to
¢’'. Thus for some ng, a,, > ¢q. Of course, we have a1 < p(ay) for all k € {0,...,no — 1}, so that
(a0, -, Qny ) solves our problem.

Next we assume that a., > 2, whence ¢, = p(2) > 2. We may assume that ¢ € (2,p(2)). We
consider 7 > 0 such that (1—7)p(2)/2 = 1, whence (1—n)p(a)/a > 1 for all « € [0,2). Then by (i),
the sequence ag = 0, a1 = (1 —n)p(ag) takes its values in [0, 2) and increases to 2. Consider now
x € (0,2) such that p(z) = ¢ (recall that ¢ € (2,p(2)) is fixed). Then for ng sufficiently large, we
have ap,—1 > x and thus an,—1 < ¢ < p(an,—1). Hence (ayg, ..., ny—1, ¢) solves our problem. [

Finally, we can give the

Proof of Theorem [[Z3. Points (ii) and (iii) follow from (i) and Lemma B3 We fix 0 < tg < T
and ¢ € (0,¢,,,). The only thing we have to check is that for all & € R?, all ¢ € [to, T, 1709 <
Clo.q(1 +1£])~%. Then the Sobolev and the ball estimate will follow (see Lemma [ETl). By Lemma
B3 we may consider ng > 1 and 0 = ap < a1 < ... < @y, such that for all k& € {0,...,n9 — 1},
ag €10,2) and agy1 < plag), with a,, > gq.

Step 1. First, we apply Lemma B2 with o = g = 0. Since ay < p(ayp), we deduce that
sup | fi(§)] < ClgI™ .

tefto/no,T)

By Lemma Bl we deduce that supyy, /. 71 8UPy,er2 fr(Ball(vg, €)) < Ct, 4.

Step 2. Define now (f})ico.1—to/no] by f¢ = f(t + to/ng). This is also a weak solution
of (L)), which satisfies the same properties as (f;)ic[o,r], and the additionnal property that
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SUD(0, 70 /no] SUPwoer2 Ji (Ball(vo, €)) < Ci, 4¢*'. We thus can apply Lemma with o = o
and 7 = a2 < p(aq), to get

sup [R@l=  sup [FlO) <l

te{?to/no,T] tG[to/no,Tfto/n()]
whence Supay, /. 1] SUPy,er2 ft(Ball(vo, €)) < Cty qe*? by Lemma Bl
Step 3. Tterating this procedure (ng times), we deduce that

sup [ fu(&)] < Cig [0,
te(to, T

But f; is a probability measure, so that |ft(§)| < 1. Thus

sup |fo(€)] < Cro,r(1+ €)%,
te [t(),T]

which ends the proof since o, > g. |

6. APPENDIX

Fourier transforms. We first prove an easy result on Fourier transforms. Recall that for f a
probability measure on R? and ¢ € R?, we denote by (&) = Ff(£) = [g. €& f(dv).

Lemma 6.1. Let f be a probability measure on R? such that |f(€)| < K|€|=%, for some a € (0,2).
Then for all vo € R?, all € € (0,1), one has f(Ball(vy,€)) < Ck o€®.

Proof. We use the Plancherel identity. Recall that

-7:(]1[9007679604%]X[yO*éqyoJrE])(glv52) = 4eitrrotitavo Sin(gle) Sin(§2€)/(§1§2)'

Setting vo = (zo, Yo),

F(Bali(u0,) < [ 100 Ty rpeteara 0 < C [ [Flep=HED2E g
R? 6162
—o | sin(&1€) sin(§2¢)| | sin(&1€) sin(&z¢)|
=Cx / g [StS] d < Cx re |G&| o2 dg,

because || > 1/2|£1&2|. We handle the substitution £ = x/e and get

o [ Isin()l [sin(zs)] of [ sG],
f(Ball(’UO, 6)) SCKG ‘/]Rz |$1|l+o¢/2 |$2|1+a/2 dzr S CKE & Wdl’l .

We easily conclude, since a € (0, 2). O

Derivatives. We recall here the Faa di Bruno formula. Let [ > 1 be fixed. The exist some
coefficients aif . >0 such that for ¢ : R — R and 7 : R — R of class C'(R),

S

(6.1) (Y = [V (r Ej > h,MIITW ¢ (1

r=1 \i1+...+i,=l

where the sum is taken over i1 > 1, ..., 7, > 1 with i1 + ... + i, = L.
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We carry on with another formula. For [ > 2 fixed, there exist some coeflicients cilr eR

cyig
such that for ¢ : R — R a C'-diffeomorphism and for 7 its inverse function,
201

(62) ) = Z (¢/(17_))r Z Cilrlq H o) (7),

r=Il+1 i1+ Fig=r—1
where the sum is taken over ¢ € N, over i1, ...,74 € {2,...,{} with ¢ + ... + i = r — 1. This formula
can be checked by induction on [ > 2.

Regularity of the modified cross section. Recall that ¥ : [0,00) — (0,7/2] was defined in
Section Bl as the inverse of G : (0,7/2] — [0,00) given by G(z) = f;/2 b(6)d6.
Lemma 6.2. The function ¢ is C* on (0,00). For all z > 0,

(i) c(l+2)7V"<9kz) <Cl+2)"1",

(ii) c(1+2)7 V=L <9 (2) < C(1 + 2)~Yv

i)  PPEI<CO+2)TT k>,

(i) [APEONPI< Gl +2)7 7 k> 1
Proof. Due to (A(y,v)), we have c¢(a™" — (7/2)7%) < G(z) < Cla™" — (n/2)7Y), for all z €
(0,7/2]. Since ¥ is nonincreasing, we easily deduce that for all z € [0,00), (z/c+ (7/2)7")" /¥ <
9(z) < (2/C+ (7/2)7%)"" and (i) follows. Next, we have |¢9'(z)| = 1/|b(9(z))|. But b(x) €
[cx=17v Cx=177], so that |9/ (2)| € 917V (2)/C, 977 (2)/c]. Using (i), we deduce (ii). Next, (iii)
is obtained from ([@2): using that for any k > 2, |G*) ()| = b~V (z)| < Cklz|7*7F, we get

2k—1
BE )< D )T Y )
r=k+1 i1+ +ig=r—1

Since we have 41,...,i4 € {2,...,k} such that i1 + ... + i, = r — 1, we see that ¢ < (r — 1)/2.
Consequently, for k£ > 2,
2k—1

WP (2)] <C Y [9(2)|" ()| D2
r=k+1
2k—1
=Cy Y [0(z)| T < ()| DV < Oy (14 [2]) T,
r=k+1

where we finally used (i). Since |A®W ()| < C; for all I > 1, (iv) follows from (B) and (iii). O

Regularity of the cutoff function. We now prove some regularity properties of our cutoff
function ¢.

Lemma 6.3. Consider the function ¢. introduced in (Z2).
(i) For B € (0,1], for all z,y > 0, all € € (0,¢),

2|97 (x) — 61 ()] < CalY |z — yl”.
(ii) For every l > 1, for every multi-index q = (qu, ..., q) € {1,2},
|00,y ++-0uy, log de([0])]] < Co (Lpojeerc—ay 1ol ™" + Tjer.—1r4nTe )
|0, 00y, [82 (10D]] < Cr (Tgjuje(e,r. 13| + e 104077 -
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Proof. We first prove (i). We recall that for any a,b > 0, there are some constants 0 < cqp < Cyp
such that for any 2,y > 0, cq |79+ —ya0| < (29 +y2)|2? —y°| < Cfp|zt? —ya+°|. We also recall
that ¢, is globally Lipschitz continuous with constant 1, that ¢.(x) = T'c for x > I'c + 1 and that
¢c(x) > x/2 for x € [0,Tc + 1], since ¢(x) > x for z € [0, — 1] and since ¢, is non-decreasing.
We set Ac(x,y) = 28|¢2 (z) — ¢2 (y)|. If 2,y > T+ 1, then A (z,y) = 0. If now z < T + 1, then

Ac(z,y) <272 (2)|67 (2) — 62 (y)]
<2%(¢ () + 62 (y))|62 (z) — &1 (y)]
<270, |00 (x) — 217 (y)]

<2952 (432) + 671N () — 82 )

V.8
C
<27 =BT 6 () — e (y)]”
Cy,B
C
§2ﬁ+vﬂpz|x _ y|B.
Cy,8

We used here that g < 1. Finally, if x > T+ 1 and y <T'¢ 41,
Ac(z,y) =2"|T7 — ¢2(y))|
<(Jz —yl” +[y|") (T = ¢7(y))
<[ —y|°T2 + |y|°|62 (z) — 62 (y)]
<l - ylfT7 + 2072 — g,
Cy.8

the last inequality being obtained as previously, since y < T'c + 1.
To prove (ii), we first observe that for k > 1,

68 ()] < Ck (" *Mppe(esey + Tin=1} Lwepser, —113 + Loer,—10.41)}) -
Using the Faa di Bruno formula (@), one easily deduces that for I > 1,

llog ¢e(2)]V] < O (Tweeryr™" + Lppeqr, -1+ T )
and

162 ()] V] < Ci (e eraya” ™ + Lger,—1,r.+1p T2 -
Using again () and that any derivative of order k > 1 of v + |v| is smaller than Cj|v|*~*, one
easily concludes. O

Exponential estimates. The next result deals with some estimates concerning the exponential
moments for the linearized Boltzmann equation. The study of exponential moments for the nonlin-
ear Boltzmann equation was initiated by Bobylev [5], see also [10] and the references therein. These
results really use the nonlinear structure of the Boltzmann equation and we can unfortunately not
use them.

Lemma 6.4. For any k € (v,1), any v,V € R2, for some constants C >0, ¢,, >0, C\, > 0,

/2
/ (e\V-i-A(G)(V—v)
—m/2

/2
/ ’G\V+A<e><V—v>\” _ ew’ b(8)d < CypeCrl¥l” CulVI™,
—m/2

- elV‘”) b(0)do < elVI" | —c. Lyt viscp)y + Cu(V] V 1)*‘”‘%““'“} :
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Proof. We start with the first inequality. Recall that by [2), |A(0)V|? = 58|V 2. We also
have (V, A()V) = —1=0|V|2, |A(0)| < |0] and 62/4 < 1 — cos < 6 for § € [~7/2,7/2]. Thus

[V +A@)(V — v)|2 :|V|2 + 1_2&(“42 + |v|2 _ o (V,0)) + 2 (V, AB)V) — 2 (V. A(6)0)
:wlvf * 1_750890“2 —2(V,v)) —2(V, A(f)v)

<|VIP(1—62/8) + 62[vf* + 4]6]|V|[v].
An simple computation shows that

IV + AO)V — )2 g{ VI>(1~ 6°/16) it |V] > 130[v]/|6] }

VI2+ 020> +410|[V]jo] if V] < 130[v|/|6]
In the case where |V| < 1, we observe that, since x € (0, 1),
[V +A@)(V —o)[* <(VI+0[(IV] + o))" < [VI* 410" (1 + |o]7).

We thus may write

/2 . .
A(V,v) ::/ (e‘v"'A(‘g)(V_”)l —elVl )b(@)d@
—7/2

/2 . ; , s
S—/_ , (eIV\ _ JIVIFa-62/16) )1{‘9‘2130|v‘/‘v‘}b(9)d9

7T/2 2 20,,12 K/2 K
+ 11{|V\21}/ / (dVPHOZPHAOIVID™ — VI M1 g0y vy b(8) 0
2

—T

/2
I ]1{|V\<1}/ (ewvwwae\(lﬂm _e\vw) b(6)d6
- —m/2
= — A1 (V,v) + Ax(V,v) + As(V,v).
We now compute carefully. First, we have

/2
A1 (Viv) 2T v >1, v >13000)} /

—T

K K(1_p2 K/2
(BIV‘ - eIV‘ (1-67/16) ) 1{‘9‘21}b(9)d9

But for [#] > 1 and |V] > 1,

VT VIFA=6216)2 S ([VIF _ ([VIF=1/16)%/ 5 (VI () _ (= IVI*(=(-1/16)/%)y 5 (VI

whence, since b([1,7/2]) > 0 by assumption,

V K
Ay (Vo) > CH]I{|V‘21,|V‘2130|’U‘}6‘ !
/2

)/ w2

Next we observe that for z,y > 0, since x/2 € (0,1), e@+¥)""" — e? < (1k/2)yx"/ 2~ Le™™ " ey

As a consequence in Ay, since |0||V] < 130]v|,
VE+OPH0IVIRD™? _ o IVI® <0 (92]0]2 4 |6]|V]|o])|V |52l V1" eCr 0 0 +011VIo])™2

<Ca(O?[of* + |01V [[o)| V|7~ 2elV T CxT,
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Integrating this formula against b(8)df (on |0] € [0, min(7/2,130[v|/|V|)]) and using (A(y,v))
yields
Ao (V,v) <Cpllgy 513 |[V]F~2el V1" [[o2 min(1, (Jol/[V])2 ) + [V |o] min(1, (o] /[V ) )]

<Cullfjosvizipe” e TV 2y 2

+ On][{w\21,|V\2\v|}6lv\m€c”lv‘m(|U|4_U|V|H+V_4 + [PV
SCHI[{‘V|21}|V|N+U_26‘VINGCN‘UIN-
We finally used that Kk + v —4 < k —2 < k+ v — 2 < 0. Recall now that for x > 0, e* — 1 < ze®,
so that in Asg, since |V] < 1,
el VITHOI"(At[v]™) _ IVI™ eIV\”(elf?I“(leI“) —1)< Cﬂ|9|ﬁecnlv\”_
Thus, using (A(v,v)) and that x > v,
/2

Ag(V,v) < CH]I{\V|§1}€C”|U‘K/ 16176(0)d < Crllgjy<aye ",
—m/2

We have proved that
AWV, 0) < —cwe! " Ty is1 vizasopey + Celgrizn VT2l 4 Ol <y e,

which ends the proof of the first inequality.
The second inequality is much easier. Since x € (0,1), we have for all z,y > 0,

|ez'”' _ ey“| < IQ|:EK _ yn|e(z\/y)*‘ < |I _ y|ne(z\/y)*‘.
Thus, since |A(6)] < |0] < /2,

VAW =0 _ VI <15 (V| + o)) eV IF2IIAVIFRD) < ¢ jg|eCrlVI (Culol”

Since f:ﬁ% |0]"b(0)df < oo by (A(y,v)), the second inequality holds true. O
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