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Abstract

A semiparametric model is considered where the functional of interest is a shift
parameter between two curves. A surprising example is provided where two at first
sight indistinguishable Gaussian priors lead to quite different behaviors of the poste-
rior distribution of the functional of interest. This phenomenon also illustrates that
a condition introduced in [4] of approximation of the least favorable direction by the
Gaussian prior is almost necessary for the Bernstein-von Mises theorem to hold.
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1 Introduction

Recent years have seen the development of a theory for the behavior of Bayesian procedures
-estimation, testing etc.- in high dimensional contexts, typically nonparametric. Under-
standing the behavior of posterior distributions when one puts a prior on an unknown
function or high dimensional unknown parameter is the main goal. Some conditions are
needed to guarantee appropriate behavior of the nonparametric posterior. The counter-
example of Diaconis and Freedman [7] for estimation of the center of symmetry (which
can in fact be seen as a semiparametric problem) illustrates this fact, since even innocent-
looking priors can lead to inconsistency in the posterior. The pioneering works [11], [20],
[12] give sufficient conditions that ensure posterior convergence at a nonparametric rate
for some distances of interest.

In semiparametric problems, the quality of a Bayesian procedure can be measured using
the marginal of the posterior with respect to the parameter of interest θ. Consistency is
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a first requirement, we refer to [26] for a review of existing results. A very desirable
further property of the convergence is given by the so-called Bernstein-von Mises theorem
(abbreviated BvM in the sequel). Its conclusion is the convergence in total variation
of the marginal posterior towards a Gaussian distribution at rate constant times 1/

√
n

and centered around a frequentist efficient estimator of θ. From it one directly deduces
that Bayesian confidence intervals asymptotically coincide with optimal frequentist ones.
The extension of the BvM theorem to semiparametric frameworks has recently sparked off
works by several authors, starting with [19], which provided a first set of general conditions,
some of which were however a bit implicit in nature or hard to check in practice. The work
[16] considered the proportional hazards model and obtained the semiparametric BvM for
Lévy-type priors, exploiting their partial conjugacy in this model. In [4], a set of simple
and easy-to-interpret sufficient conditions were given for the semiparametric BvM to hold
in a quite general semiparametric framework, focusing mostly on Gaussian process priors.
In [18], generic condition are given for estimation of linear functionals of the density in the
case of sieve-type priors. In [1], a set of sufficient conditions for the semiparametric BvM
to hold is given. We also mention the parallel direction of research considering the validity
of BvM results in nonparametric settings [6], [8], [15] or growing dimension settings, see
for instance [10], [2].

Back to the semiparametric framework, in [4], a novel condition consisted in measuring
the quality of approximation of the least favorable direction of the model by the RKHS
of the Gaussian prior. The present work shows that a condition of this type is needed in
general for the BvM theorem to hold, thus complementing [4]. We focus mostly on a model
of alignment of curves, which makes appear an interesting phenomenon of independent
interest that we describe below. We also exhibit another semiparametric model in white
noise, where the aforementioned condition is strictly necessary.

Let θ a real belonging to an open interval Θ ⊂ [−τ, τ ], with 0 < τ < 1/2. Let f be
an element of L2[0, 1]. For simplicity of treatment, we assume that f is 1-periodic. One
observes in continuous time the paths

dY (t) = f(t)dt+
1√
n
dW1(t)

dZ(t) = f(t− θ)dt+
1√
n
dW2(t),

where t ∈ [0, 1], n ≥ 1 is an integer measuring the amount of “information” present in the
model and W1,W2 are independent standard Brownian motions. Both the real θ and the
function f are unknown, making the model semiparametric in η = (θ, f). For an overview
on semiparametric models, we refer to [22], Chapter 25. We are interested in estimation
of θ from the Bayesian perspective. We denote by X the coupled observation of (Y, Z).

This type of model is of particular interest in signal processing, where it naturally arises
in problems of alignment of noisy curves or images, see for instance [9]. For the sake of
simplicity, the Gaussian white noise version of the model is considered here, but analogous
results hold in discretized versions of it as well.
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We follow a Bayesian approach and assign a priori probability distributions πθ and πf
to the unknown θ and f . Those yield a prior Π = πθ ⊗ πf on the pair η = (θ, f). This
prior is updated with the data X leading to the posterior distribution Π(·|X). We assume
that there exists a “true value” η0 = (θ0, f0) of the parameter and are interested in the

convergence of the posterior under the corresponding law P
(n)
η0 of the observations X, as

n→ +∞. We often drop the index n, and denote Eη0 the expectation under this law.
As prior πθ on θ, we simply take the uniform distribution on the interval [−τ, τ ]. For f

we consider two prior distributions on the space of 1-periodic square integrable functions.
Let {νk}k≥1 be a sequence of independent N (0, 1) random variables. We define, for any
real α > 1, the distributions (the variable u belongs to R)

παf ∼
√

2
+∞∑
k=1

[
(2k)−

1
2
−αν2k cos(2πku) + (2k)−

1
2
−αν2k+1 sin(2πku)

]
πα,∗f ∼

√
2

+∞∑
k=1

[
(2k)−

1
2
−αν2k cos(2πku) + (2k + 1)−

1
2
−αν2k+1 sin(2πku)

]
.

Thus, the prior παf draws random functions with Gaussian Fourier coefficients of variance
equal on even and odd harmonics to the same constant times k−1−2α. The prior πα,∗f is the
same, except that the variance of the kth Fourier coefficient is simply k−1−2α.

Provided the true function f0 has at least one derivative in the L2-sense , one can set

γη0 = −f ′0/2 and Ĩη0 =
1

2

∫ 1

0

f ′20 (u)du.

These quantities will be further interpreted in Section 2. In the sequel, we often drop the
index η0 and simply write Ĩ and γ. We also denote

∆ = −Ĩ−1

∫ 1

0

[γ(u)dW1(u)− γ(u− θ0)dW2(u)]
not.
= Ĩ−1W(1,−γ).

A special example illustrating our results is the function f
[β]
0 , defined for β > 3/2 by

f
[β]
0 (u) =

√
2

+∞∑
k=1

[
(2k)−

1
2
−β cos(2πku) + (2k + 1)−

1
2
−β sin(2πku)

]
. (1)

The condition β > 3/2 ensures that f
[β]
0 is a continuously differentiable (C1) function.

One could also take same coefficients in front of cosine and sine, that is (2k)−
1
2
−β. The

conclusion of the Proposition below would be the same.
For any prior Π on Θ × F , let Π(· × F |X) denote the marginal distribution on θ of

the posterior distribution with respect to Π given the observation of the data X = (Y, Z).
Let ‖ · − · ‖ denote the total variation distance between positive measures on R equipped
with the Lebesgue σ-field.

The following statement is a consequence of the main result of the paper, see Theorem
1 in Section 2. The details on what is precisely meant by the semiparametric Bernstein-von
Mises theorem are postponed to Section 2.

3



Proposition 1. Let θ0 belong to Θ and f0 be the function f
[β]
0 defined in (1). Let us set

Πα = πθ ⊗ παf and Πα,∗ = πθ ⊗ πα,∗f . Take α = 4 and β = 2. As n→ +∞, it holds

Eη0‖Πα(· × F |X)−N (θ0 +
∆√
n
,
Ĩ−1

n
)(·)‖ → 0.

In particular, the semiparametric Bernstein-von Mises theorem holds for Πα. On the other
hand, for any δ > 4/9 and any M > 0, as n→ +∞,

Eη0Πα,∗(|θ − θ0| ≤Mn−δ |X)→ 0.

In particular, the marginal of the Bayesian posterior for Πα,∗ is not
√
n-consistent.

One of the surprising aspects of the above result is that the two considered priors Πα

and Πα,∗ share the same properties insofar as estimation of f0 is concerned. More formally,
if one considers the posterior distributions corresponding to Πα and Πα,∗ for nonparametric
estimation of f0 in our model, they have precisely the same rate of convergence towards f0.
Combining nonparametric techniques from [23], [3], it can be checked that, for f0 = f

[β]
0 ,

β > 1 and with ‖ · ‖2 the L2-norm on the interval [0, 1], there exist some positive constants
a, b such that, denoting εn = n−α∧β/(2α+1),

Eη0Π̄(aεα,βn ≤ ‖f − f0‖2 ≤ bεα,βn |X)→ 1,

as n→ +∞ and the preceding display holds for both Π̄ = Πα and Π̄ = Πα,∗. Note however
that both posterior distributions have radically different behaviors insofar as estimation of
the functional θ0 of the full law Pη0 is concerned.

One could notice that παf is stationary, while πα,∗f is not. However, we will see below
that many non-stationary priors will work here too (in the sense that they satisfy the
Bernstein-von Mises theorem) while πα,∗f does not.

The outline of the paper is as follows. In Section 2, we introduce the main notation
and assumptions. We also explain how this paper is related to [4]. We then state our
main result, and provide some discussion. Section 3 is devoted to the proof of the main
result. Finally, in the appendix Section 4, it is checked that some particular priors verify
the general assumptions.

2 Posterior concentration in the curve alignment model

Let {εp}p≥1 denote the Fourier basis that we number as follows

ε1(·) = 1, ε2k(·) =
√

2 cos(2πk·), ε2k+1(·) =
√

2 sin(2πk·), k ≥ 1.

Let Θ be an open sub-interval of [−τ, τ ], where 0 < τ < 1/2. We assume that “the
true” parameter θ0 belongs to Θ.
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Let F denote the linear space of all square-integrable functions on [0, 1], extended by

periodicity to R. Any element f in F has Fourier coefficients fk =
∫ 1

0
f(u)εk(u)du, any

k ≥ 1. We further impose f1 =
∫ 1

0
f = 0 for any f in F .

The last requirement is for notational simplicity. The results of this paper immediately
extend to the case where f1 is not necessarily zero by adding a first Fourier term to the
priors too. Next we state the assumed regularity conditions on “the true” f0.

Condition (R). Assume that f0 belongs to F , is continuously differentiable and, for
some β > 1,

f0,1 = 0, |f0,2| > 0,
∑
k≥1

k2β {f 2
0,2k + f 2

0,2k+1} < +∞

The condition |f0,2| > 0 ensures identifiability in imposing 1 as the smallest period of
f . The last condition ensures some (Sobolev) smoothness. The case of more irregular
nuisance functions, for instance if β < 1, is also interesting, but one leaves the set of
“smooth” models, see [5] for some frequentist results.

As an example, the function f
[β]
0 defined by (1) fulfills conditions (R) for β > 3/2 (as

noted above, asking β > 3/2 for this specific function guarantees that f
[β]
0 is C1).

Also, in this article we shall focus on the case of 1-dimensional θ, which could be
extended to the multi-dimensional case of θ ∈ Rd, d > 1 without much effort.

2.1 Semiparametric structure

Likelihood. For any pair (θ, f) in Θ×F , the probability Pθ,f of observing the pair of paths
(Y, Z) given (θ, f) is related to the probability P0 of observing (Y, Z) given f = 0 through
Girsanov’s formula.

The likelihood of X = (Y, Z) in our model is given by the Radon-Nikodym derivative

dPθ,f

dP0

(X) = exp

(
n

∫ 1

0

f(t)dY (t)− n

2

∫ 1

0

f(t)2dt

)
× exp

(
n

∫ 1

0

f(t− θ)dZ(t)− n

2

∫ 1

0

f(t− θ)2dt

)
= exp

(
n

∫ 1

0

{f(t)dY (t) + f(t− θ)dZ(t)} − n
∫ 1

0

f(t)2dt

)
,

noticing that 1-periodicity of f implies that the two quadratic terms are the same. We
denote by `n(θ, f) the log-likelihood.
LAN expansion. The log-likelihood-difference Λn(θ, f) = `n(θ, f) − `n(θ0, f0) under the
true (θ0, f0) is obtained replacing Y, Z by their expressions and equals

Λn(θ, f) =− n

2

∫ 1

0

(f − f0)2(t)dt− n

2

∫ 1

0

{f(t− θ)− f0(t− θ0)}2(t)dt

+
√
n

∫ 1

0

(f − f0)(t)dW1(t) +
√
n

∫ 1

0

{f(t− θ)− f(t− θ0)}dW2(t).
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For any true parameter (θ0, f0), we define an inner product 〈 · , · 〉L on R × F by, for any
(h1, a1), (h2, a2) in R×F ,

〈 (h1, a1) , (h2, a2) 〉L = 〈a1, a2〉2 + 〈a1 − h1f
′
0, a2 − h2f

′
0〉2,

with 〈 · , · 〉2 the usual inner product on L2[0, 1]. The norm associated to 〈 · , · 〉L will be
denoted ‖ · ‖L and for brevity ‖h, a‖L stands for ‖(h, a)‖L. This norm defines an Hilbert
space structure on R×F .

For any (h, a) ∈ R×F , we also denote

W( (h, a) ) =

∫ 1

0

a(u)dW1(u) +

∫ 1

0

(a− hf ′0)(u− θ0)dW2(u).

Notice that for any d ≥ 1 and any fixed v1, . . . , vd each in R×F , the variable W (v1, . . . , vd)
is centered multivariate Gaussian, of covariance structure (〈 vi , vj 〉L)1≤i,j≤d.

In the sequel we use as shorthand notation, for any (θ, f) in Θ×F ,

hθ =
√
n(θ − θ0), af =

√
n(f − f0),

and also, for the following normalized remainder term of the Taylor expansion of f0,

Dn(t, hθ) =
√
n{f0(t− θ)− f0(t− θ0)}+ hθf

′
0(t− θ0).

The previous definitions enable to rewrite the log-likelihood difference Λn(θ, f) as

Λn(θ, f) = −n
2
‖ θ − θ0, f − f0 ‖2

L +
√
nW( θ − θ0, f − f0 ) +Rn(θ, f), (2)

where the remainder term Rn(θ, f) is the sum of the four following terms Rn,i, 1 ≤ i ≤ 4,

Rn,1(θ, f) =

∫ 1

0

(af (t− θ)− af (t− θ0))dW2(t)

Rn,2(θ, f) =

∫ 1

0

Dn(t, hθ)dW2(t)

Rn,3(θ, f) = −
∫ 1

0

(af − hθf ′0)(t− θ0) [af (t− θ)− af (t− θ0) +Dn(t, hθ)] dt

Rn,4(θ, f) = −1

2

∫ 1

0

[af (t− θ)− af (t− θ0) +Dn(t, hθ)]
2 dt.

While (2) is an identity valid for any θ, f , one can for a moment consider it on shrinking
neighborhoods of size 1/

√
n of the true (θ0, f0). For any fixed (t , a) in Θ×F ,

Λn(θ0 +
t√
n
, f0 +

a√
n

) = −1

2
‖ t , a ‖2

L +W( t , a ) +Rn(θ0 +
t√
n
, f0 +

a√
n

),

where the remainder term, as can be checked from the previous expressions, tends to zero
in probability as n → +∞ (use the continuity at θ0 of θ →

∫ 1

0
(a(t − θ) − a(t − θ0))2dt
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for any square-integrable function a and the fact that for any f0 satisfying (R), we have∫ 1

0
Dn(t, θ0 + t/

√
n)2dt = o(1) as n→ +∞, similarly to [4], Lemma 5).

This expansion is called local asymptotic normality (LAN) property of the considered
sequence of statistical experiments, see for instance [17] or [25], Section 3.11. The expansion
here has also the property that the tangent space coincides with R × F and that the
approximating paths (θ0 + t/

√
n, f0 + a/

√
n) are linear.

The fact that the expansion holds means that the model ressembles asymptotically a
(shift) Gaussian experiment, as studied in the (more general) theory of limiting experiments
due to Le Cam. The inner-product 〈 · , · 〉L should be understood as a generalization of the
Fisher information metric arising in smooth parametric models. One can study concepts
like optimality of estimation of θ - efficiency in this context- directly from the Hilbert space
structure generated by 〈 · , · 〉L.

Efficient information and least favorable direction. It follows from the general results
for semiparametric models in this context, see [17] or [25], Section 3.11, that the optimal
amount of information when estimating θ for unknown f is given by the projection of the
vector (1, 0) into the orthogonal for 〈 · , · 〉L of the subspace {0}×F . If we denote by (0, γ)
the orthogonal projection of (1, 0) onto {0} × F , we have, for any (t , a) in R×F ,

‖ t , a ‖2
L = ‖ 1,−γ ‖2

Lt 2 + ‖ 0, a − tγ ‖2
L.

Notice that by positivity of the norm this quantity is always larger than ‖ 1,−γ ‖2
Lt 2 and

that this lower bound is achieved when a = tγ. In the model considered here, a simple
calculation shows that γ = −f ′0/2, which is called least favorable direction. The quantity

Ĩ = ‖ 1,−γ ‖2
L =

1

2

∫ 1

0

f ′20 (u)du > 0

is called efficient information. Efficient semiparametric estimators of θ have variance

Ĩ−1/
√
n asymptotically and such an estimator θ̃n is called linear efficient if it has the

expansion, as n→ +∞,
√
n(θ̃n − θ0) = Ĩ−1W(1,−γ) + oPnη0 (1),

which can be rewritten as θ̃n = θ0 + ∆/
√
n + oP (1/

√
n), with ∆ = Ĩ−1W(1,−γ). It is

important to note that in the model under consideration, there is a loss of information,
in the sense that the information in the semiparametric context is smaller than in the
parametric context where f is known, where one can check that it equals ‖1, 0‖2

L = ‖f ′0‖2
2.

2.2 Prior

The prior πθ on θ is chosen to be the uniform distribution on the interval [−τ, τ ]. The
prior on the nuisance f is defined as the distribution of the Gaussian process

πσf ∼
√

2
+∞∑
k=1

[σ2kν2k cos(2πku) + σ2k+1ν2k+1 sin(2πku)] ,
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for some square integrable positive sequence {σk}k≥1. This induces a prior on the pair
(θ, f) denoted Πσ = πθ ⊗ πσf . Among those priors, we also denote

παf ∼
√

2
+∞∑
k=1

[
(2k)−

1
2
−αν2k cos(2πku) + (2k)−

1
2
−αν2k+1 sin(2πku)

]
,

πα,∗f ∼
√

2
+∞∑
k=1

[
(2k)−

1
2
−αν2k cos(2πku) + (2k + 1)−

1
2
−αν2k+1 sin(2πku)

]
.

We denote Πα = πθ ⊗ παf and Πα,∗ = πθ ⊗ πα,∗f . We could also consider sieve priors, for
which the sum is truncated at some cut-off k(n). For instance, all results obtained in the
sequel for the priors παf , π

α,∗
f are also valid when the sum is truncated at k(n) = bn1/(2α+1)c.

These cutted distributions make the prior depend on n, which makes the notation slightly
more involved, so for simplicity we focus on the case of the infinite prior.

We shall assume that the sequence {σk} is decreasing. Let {γk} denote the Fourier
coefficients of γ = −f ′0/2. We assume that σ fulfills the following technical requirement,
as n→ +∞, ∑

k≥1

(1 ∧ n−1σ−2
k )γ2

k = o(1). (3)

Equation (3) is automatically fulfilled for instance for f0,k = f
[β]
0,k = k−

1
2
−β and σk ∼

k−1/2−α, for any β > 1 and α > 0. Since σ is decreasing and square integrable, and thus
tends to 0, there exists a largest integer Kn such that nσ2

Kn
≥ 1. We define the sequence

γ[n] =
∑
k≤Kn

γkεk(·).

Associated to the Gaussian prior πσf is the Reproducing Kernel Hilbert Space (RKHS)
Hσ, see [24] for basic properties. It can be checked that for the prior at stake

Hσ = {h = (hk)k≥1,
∑
k≥1

σ−2
k h2

k < +∞}.

When no confusion is possible, we drop the index σ in the notation for Hσ. This space is
equipped with the Hilbert-space norm, for h ∈ H,

‖h‖2
H =

∑
k≥1

σ−2
k h2

k.

One can notice that (3) ensures some approximation of the least favorable direction γ
by elements of the RKHS H of the prior. More precisely, (3) implies the existence of a
sequence ρn → 0 such that

inf
h∈H, ‖h−γ‖2<ρn

‖h‖2
H ≤ nρ2

n.

Indeed, the sequence γ[n] defined above belongs to H and, under Condition (3), is such that
‖γ[n] − γ‖2

2 + n−1‖γ[n]‖2
H tends to 0.
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To a Gaussian process (Z(t))t∈[0,1] defined on the probability space Ω with covariance
function K(·, ·) and associated RKHS H, one can always associate a map U from the linear
span of the functions t→ K(·, t) into L2(Ω) by

U :

p∑
i=1

aiK(·, ti)→
p∑
i=1

aiZ(ti, ω).

It is easily seen that U is an isometry, which can be extended to an isometry from H into
L2(Ω), see for instance [24][Section 3]. In our framework, explicit calculations easily reveal
that for the prior πσf , denoting {εk} the Fourier basis, U is the map described by

U : H → L2(Ω)
+∞∑
k=1

κkεk(·) →
+∞∑
k=1

σ−1
k κkνk.

There is a slightly more compact way to think about U~ for ~ ∈ H. Let f denote a
function drawn according to the prior, that is f(·) =

∑
k≥1 σkνkεk(·). Let us write ~(·) =∑

k≥1 κkεk(·). Then notice that by the preceding identity, U~ =
∑+∞

k=1 σ
−2
k (σkνk)κk, which

can be interpreted as an inner product “〈f, ~〉H” in H, although f does not belong to H.

2.3 Bernstein-von Mises Theorem, sufficient conditions

We now have a prior Π = Πσ = πθ⊗πσf on the pair (θ, f), which combined with the data X
leads to the posterior distribution using Bayes formula. We are interested in the marginal
distribution in θ, which is given by, for any measurable B ⊂ Θ,

Πσ(B |X) =

∫
B

∫
F e

`n(θ,f)dπσf (f)dπθ(θ)∫
Θ

∫
F e

`n(θ,f)dπσf (f)dπθ(θ)
.

We also introduce a notation for the posterior distribution in the model where θ is known
to be θ0, which will appear as a technical tool in our results. For a measurable set C in F ,

Πθ=θ0(C |X) =

∫
C
e`n(θ0,f)dπσf (f)∫

F e
`n(θ0,f)dπσf (f)

.

We also denote Eθ=θ0
Π (· |X) the expectation with respect to this measure.

In the present semiparametric context, a very desirable result for the marginal posterior
Πσ(·×F |X) is the so-called Bernstein-von Mises phenomenon, which asserts that the total
variation distance between the marginal posterior and the normal N (θ̃n, 1/(nĨ)) converges

(in P
(n)
η0 -probability) to 0 as n → +∞, where θ̃n is an efficient estimator of θ in the

semiparametric sense and Ĩ the efficient information. Alternatively, one can center the
target normal distribution at the point θ0 + ∆/

√
n or at any linear and efficient estimator

of θ0 (this might be the case for a maximum likelihood-type estimator θ̂MLE, but the
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previous centering provides more flexibility, since one does not have to prove efficiency of
θ̂MLE, see [21] for a discussion).

We now briefly describe the ideas behind Theorem 2 in [4] and specialize the conditions
to the framework of the curve alignment model under consideration. The result in itself
is not used in this paper, so the proof presented in Section 3 is independent of it, though
related. First, there should exist a sequence γn of elements in H such that, for some
sequence ρn → 0,

‖0, γ − γn‖L ≤ ρn and ‖γn‖2
H ≤ nρ2

n. (4)

Since in our model the LAN-norm of (0, a) is a multiple of the L2-norm of a, we have
already checked above that under (3) this condition is satisfied for the choice γn = γ[n].

Concentration (C1). This condition requires the existence of a rate εn → 0 and of a
sequence of measurable sets Fn in F such that, if Fn(θ) denotes Fn + (θ − θ0)γn,

Π
(
{η ∈ Θ×Fn, ‖η − η0‖L ≤ εn} | X(n)

)
→ 1,

inf√
I|θ−θ0|≤εn

Πθ=θ0
(
{f ∈ Fn(θ), ‖0, f − f0‖L ≤ εn/2} | X(n)

)
→ 1,

as n→ +∞, in P
(n)
η0 -probability.

This condition asks for the posterior distribution to concentrate at some rate εn towards
the true η0 = (θ0, f0), in terms of the LAN-norm. This assumption has a non-parametric
flavour and can typically be checked using Bayesian nonparametric techniques, as devel-
oped for instance in [11] (see [23] for specific techniques for Gaussian processes). Often,
results are first obtained in a distance for which some tests are known to exist. Some extra
work might then be needed to obtain results in terms of ‖ · ‖L. Notice however that the
condition just ask for the existence of a rate, which need not be very fast (of course a too
slow rate makes the next condition harder to check). One might also directly look for a
rate in the distance of interest, see for instance [13] for some results related to the sup-norm.

Local Shape (N1). Setting Vn = {(θ, f) ∈ Θ × Fn, ‖θ − θ0, f − f0‖L ≤ 2εn}, this
condition requires that for any (θ, f) in Vn,

sup
(θ,f)∈Vn

|Rn(θ, f)−Rn(θ0, f − (θ − θ0)γn)|
1 + n(θ − θ0)2

= o
P

(n)
η0

(1).

This condition means that the expansion of the log-likelihood around the true parameter
should not be too far from the one which would be obtained in a Gaussian shift experiment.
This condition enables the posterior distribution to have a Gaussian shape in the limit
n → +∞. The less “complex” (or “large”) the sieves Fn are, the easiest this condition
to verify. For Gaussian priors, Borell’s inequality is often a useful tool to construct sieves
verifying this conditions, see Section 4.
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We refer to [4] for further comments on how to check conditions (C1) and (N1) in
general. Here, as verified in Section 4, both conditions hold for instance for the priors Πα

and Πα,∗, when choosing εn proportional to n−α∧β/(2α+1), and α > 1 +
√

3/2, β ≥ 2.
Conditions (C1), (N1) will be part of the assumptions of Theorem 1 below. We note

that (C1) is slightly weaker than (C’) in [4] (the condition on the Kullback-Leibler neigh-
borhoods will not be needed in the proof of Theorem 1).
The last assumption made in [4] is related to how well the least favorable direction γ can be
approximated by elements of the RKHS H of the Gaussian prior. Given an approximation
γn of γ such that (4) is fulfilled with rate ρn, condition (E) assumes that, as n→ +∞,

(E)
√
nεnρn = o(1) and W(0, γ − γn) = o

P
(n)
η0

(1).

The better the approximation of γ, the faster the rate ρn and the weaker this condition
becomes, so one typically chooses γn such that this approximation is the best possible.

We note that the conditionW(0, γ−γn) = oP (1) is automatically verified in our context
when taking γn = γ[n], by definition of W and because ‖0, γ − γn‖2 tends to 0.

2.4 Main result

Let us denote, for any sequence σ as specified in Section 2.2,

ζσn =
π√
n

+∞∑
k=1

kf0,2kf0,2k+1(σ−2
2k+1 − σ

−2
2k )

{
(2n)2

(2n+ σ−2
2k )(2n+ σ−2

2k+1)

}
. (5)

Theorem 1. Let η0 = (θ0, f0) belong to Θ× F , where f0 satisfies (R). Suppose that σ is
a decreasing square integrable sequence and satisfies (3). Suppose that the corresponding
prior Πσ satisfies conditions (C1) and (N1). Then, if ζσn is defined by (5), as n→ +∞,

Eη0‖Πσ(· × F |X)−N (θ0 +
∆ + ζσn√

n
,
Ĩ−1

n
)‖ → 0.

Theorem 1 gives the exact expression up to the order oP (1/
√
n) of the centering term

of the semiparametric Bernstein-von Mises theorem in the model of alignment of curves,
for a fairly large family of priors Πσ, provided two basic requirements of concentration
(C1) and shape (N1) are met. Notice that the semiparametric BvM theorem holds if and
only if ζσn = o(1) as n → +∞. We illustrate the behavior of ζσn below for priors having a
polynomial decrease. The main consequences of this result are

• Structural nonparametric assumptions such as non-parametric (C1) posterior rate
εn of estimation of η = (θ, f) and approximately Gaussian shape (N1) of the model
are not enough to characterize the semiparametric problem when the least favorable
direction γ is nonzero (Theorem 1 in [4] shows that these conditions are sufficient if
γ = 0, for general, possibly non-Gaussian, priors). Indeed, a bias term ζσn potentially
appears depending on the choice of σ, and ζσn becomes dominant for some regularities,
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typically (but not always) when a smooth prior (σ−1
k large) is combined with a less

regular f (f0,k goes slowly to 0). This confirms the need, as already suggested in
[4], of avoiding oversmoothing in the prior choice. The safe way indicated in [4]
being “choosing a prior with [regularity] α as small as allowed by the theory”. This
illustrates the necessity of a condition of the type (E). If this condition is not met,
then the bias terms can become dominant, as will be seen in the examples below.

• One step further, this result can be interpreted in a more refined way at the light of
how the least favorable direction is approximated through the prior. The fact that
γ = −f ′0/2 (here) plays a role can be guessed when recalling that γ2k = −kπf0,2k+1

and γ2k+1 = kπf0,2k. Thus ζσn can be read as a twisted inner-product between f0

and γ, where the prior comes in through σ. The fact that the expression cancels if
σ2k = σ2k+1 is related to the fact that f0 and γ are orthogonal in L2[0, 1] (recall that
f0 is 1-periodic). This makes it possible for two close priors to behave differently.
In general, when γ and f0 are not orthogonal, the contribution of the bias when
oversmoothing (α large) is analogous for priors of the same regularity, see the example
of the amplitude estimation model below.

• To synthesize, the present case corresponds to a critical situation where validity of
BvM depends on much more refined properties of the prior than its only regularity.
Though the orthogonality of f0 and γ makes it possible for BvM to be verified even
when oversmoothing (for priors where σ2k is equal or very close to σ2k+1), in most
cases a second order term appears in the form of ζσn which introduces an extra bias.

Let us now illustrate the behavior of ζσn in function of σ and f0. We consider the simple

case of f0 = f
[β]
0 such that f

[β]
0,k = k−1/2−β. We consider the priors Πσ = Πα and Πσ = Πα,∗.

First it should be noted that both priors satisfy (C1), (N1) for instance under the condition
that α > 1 +

√
3/2 = 1.87 and β ≥ 2 (the condition is even satisfied in a slightly larger

zone, see Section 4 or [4], Fig. 1). The proof of this is very similar to the proof of the
corresponding result for the translation model studied in [4]. For completeness the details
are included in Section 4. Once this has been noted, we immediately get, for Πσ = Πα,
that ζσn = 0. On the other hand, if Πσ = Πα,∗, then ζσn is of the order of κ2α−2β+1

n n−1/2,
where κn = bn1/(2α+1)c, if 2α− 2β + 1 > 0 (for smaller α’s it is of the order of 1/

√
n, with

an extra log n in case of equality). Thus, according to the conclusion of Theorem 1, there
is an extra bias appearing in the centering if this term is not a o(1) as n→ +∞, that is if
α ≥ 2β − 1/2. This includes Proposition 1, where we took α = 4 and β = 2.

Remark. Another surprising aspect of the above is that, in the particular case where
one would assume beforehand that the true f0 has Fourier coefficients k−1/2−λ for some
(unknown) λ > 0, the prior π∗,αf with coefficients k−1/2−α would in principle look more
natural than παf . Theorem 1 shows however that, if α = 4, the corresponding prior is not
suitable for estimating θ0 when λ = 2, in that the posterior marginal does not concentrate
at rate 1/

√
n around θ0 (this phenomenon appears for α’s at least slightly larger than β,

if α = β then both priors lead to the BvM theorem).
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2.5 Discussion

An examination of the proof of Theorem 1 (or of the main result in [4]) shows that the
following quantity is responsible for the “extra-bias” phenomenon when it exists. Let γn
be an approximating sequence in H such that (4) is satisfied with the fastest possible rate
ρn. Let us set

ξn(f) = −
√
n〈(0, f − f0), (0, γ − γn)〉L +

Uγn√
n
. (6)

For this term to be negligible, we need, with the notation h =
√
n(θ − θ0),

log Πθ=θ0(ehξn(f)|X) = oP (1 + h2).

As examplified by priors Πα and Π∗,α, failure of this condition induces an extra bias in
the Bernstein-von Mises theorem. So, what is required is that joint estimation of the true
f0 and the least favorable direction γ be good enough. Also, as we have noted already,
concentration properties of the posterior around the true f0 are not enough for the BvM
theorem to hold, since from this viewpoint Πα and Πα,∗ cannot be distinguished. Something
more is needed, which involves approximation of the least favorable direction γ.

What is generally the order of the terms in (6) ?
Let us briefly explain how (6) was bounded in [4], resulting in the condition

√
nεnρn → 0.

For the first term in ξn, by construction ‖0, f − f0‖L concentrates at rate εn. Then, by
assumption on γn, the term ‖0, γ − γn‖L is of the order ρn. Cauchy-Schwarz inequality
leads to an upper- bound

√
nεnρn for this term. For the second term, under the prior Uγn

is N (0, ‖γn‖2
L) distributed. Hence the event

H = {ω, |Uγn(ω)| > M
√
nεn‖γn‖H}

has prior probability at most exp(−Mnε2
n/2). From this fact one can check that the

posterior probability of the event H tends to zero, using Lemma 1 in [12]. This means one
can restrict to the event H, which leads to a bound proportional to εn‖γn‖H for the term
Uγn/

√
n. By assumption on γn, the previous bound is at most of order

√
nεnρn. This

shows that (6) is bounded by (
√
nεnρn)h. Hence the condition

√
nεnρn → 0.

Of course, when considering specific models, the two terms considered above might
present some simplifications which do not make the condition sharp. This is what happens
in our model. Indeed, the fact that f0 and γ are orthogonal in L2(0, 1) implies some
simplifications in (6). In that one can actually interpret ζσn as a “second order term”.

However, even here the condition
√
nεnρn → 0 is already fairly precise, as one can see

by looking at the example of f
[β]
0 and of prior Π∗. As seen above, ζσn can for some priors be

as large as
√
nn−2β/(2α+1), which must tend to zero if one wants the BvM theorem to hold,

while the condition that
√
nεnρn → 0 amounts to asking for the slightly stronger condition√

nn(1−2β)/(2α+1) → 0. We notice that in this case, it is still possible for well chosen priors
to verify BvM even in the zone where the previous conditions do not hold (for instance,
here, by choosing σ2k = σ2k+1). However, it appears that in general, oversmoothing will
typically result in extra bias, and the next example shows what seems to be the prototypical
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situation, where the BvM theorem fails to hold if
√
nεnρn does not tend to 0, at least for

some true parameter η0 = (θ0, f0).
Necessity of the condition

√
nεnρn → 0 in general

Here we show that there are models (in fact presumably most models) where failure of√
nεnρn → 0 implies that the BvM theorem does not hold. As what preceeds suggests, let

us consider a model where (0, f0) and (0, γ) are not orthogonal for 〈· , ·〉L. For t ∈ [0, 1],
let the observation process be given by the path X defined by

dX(t) = θf(t)dt+
1√
n
dW (t),

for some square integrable function f and a positive real θ. It can be checked that the
least favorable direction is given by γ(·) = f0(·)/θ0. In particular, the inner product

〈(0, f0), (0, γ)〉L is strictly positive. For the function f0 = f
[β]
0 , and prior Πα, where say

α ≥ β (for α < β the considered condition is empty if β > 1/2), combining results in
[23] and [3] one can check that εn = n−β/(1+2α) is the precise rate of convergence of the

posterior when f0 = f
[β]
0 , up to a multiplicative constant. Also, ρn is of the same order

as εn when α ≥ β, since γ is equal to f0 up to a constant. Computations similar to the
ones in Lemma 1 below show that the extra bias term induced by (6) when α ≥ β is of the
order of h(

√
nn−2β/(1+2α)) which can thus be identified to h(

√
nεnρn) up to a multiplicative

constant, so the above claim is established.
Overspecification, a remark
In this paragraph we would like to comment on the special subcase of the main model

of this paper corresponding to the case of symmetric (i.e. even) functions f0, for which
f0,2k+1 = 0. If one knows beforehand that the curve is symmetric, then the model can be
seen to reduce (from the semiparametric perspective) to the problem of center of symmetry
estimation in Gaussian white noise, see [14], for which the semiparametric BvM theorem
has been obtained in [3]. In particular, there is no information loss in this model, and the
efficient information equals the Fisher information in the parametric case, that is ‖f ′0‖2.

Now a natural question is: does one recover the results in that specific (sub-)model
using a prior such as Πα ? The answer is no, since Theorem 1 applied with the prior
Πα (α = 2, say) implies the concentration of the posterior with variance Ĩ−1 = 2‖f ′0‖−2,
so the (optimal) Bernstein-von Mises theorem does not hold for this prior. This could
seem unexpected: indeed, under conditions similar to (C1), (N1), the BvM theorem is
established in [3] for a prior putting mass only on symmetric functions (that is σ2k+1 = 0).
Adding the antisymmetric part of the prior by having nonzero σ2k+1’s - the prior is somehow
overspecified - yields suboptimality. From the prior mass point of view, both priors however
do charge in about the same way neighborhoods of the true (θ0, f0), but, again, have quite
different behaviors in the limit (the difference is less important here, with a loss only in
terms of the constant in the rate).

In fact, this phenomenon is very common, already in simple parametric models. If
the parameter takes the form θ = (θ1, θ2) and the Fisher information matrix (Iij)i≤2,j≤2 is
invertible but non-diagonal, then there is a loss of information as far as estimation of θ1 is
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concerned. If θ2 is known, say θ0 = (θ01, 0), but the prior charges both θ1 and θ2, then the
posterior in θ achieves the (suboptimal) information I11 − (I2

12/I22). The present remark
constitutes an infinite-dimensional analogue of this fact.

3 Proof of Theorem 1

The proof follows to some extent the steps in [4], up to the fact that here bias terms,
which in some cases do not vanish, need to be dealt with. In particular, we introduce an
approximating sequence γn of γ in the RKHS H of the prior. We point out the following
variant of the proof: one could, once the likelihood localized in an appropriate neighbor-
hood with (C1), (N1), write down an analogue of Lemma 1 without introducing γn and
changing variables (the computations are still relatively similar, though), exploiting the
partial conjugacy of the prior in the nonparametric component. The advantage of the
proof below is that it is more generic. Up to Lemma 1, which is model-specific, it can be
used for different models, even in situations where the model is not partially conjugate,
provided one can evaluate the posterior probability appearing in Lemma 1.

Proof of Theorem 1. First let us gather a few properties of the approximating sequence
γ[n] defined as

γn = γ[n] =
Kn∑
k=1

γkεk,

where Kn was defined as the largest integer such that nσ2
k ≥ 1. Due to (3), as n→ +∞,

‖0, γ − γn‖L = o(1), n−1‖γn‖2
H = o(1).

As a direct consequence of (3), we also have that∑
k≥1

(σ2
kn ∧ σ−2

k n−1)2γ2
k = o(1).

The proof starts similarly as in [4]. One difference is that we will not take the indicator
that Uγn is smaller than some quantity. Indeed, here the main point is that Uγn is one of
the terms responsible for the “extra bias phenomenon”, when it exists. To be able to see
this, it is thus important to let Uγn vary freely.

Now, condition (C1) enables one to restrict the study of the posterior Π(· |X) to a
neighborhood of the true η0 = (θ0, f0) of some size εn in terms of ‖ · ‖L. Similarly to [4],
setting Vn = {(θ, f) ∈ Θ×Fn, ‖θ − θ0, f − f0‖L ≤ εn}, one first shows that, due to (C1),
it is enough to focus on the posterior restricted to Vn that is ΠVn(· |X). Then, we directly
have the bounds for any measurable B ⊂ Θ,

P2(B)

Q2

≤ ΠVn(B |X(n)) ≤ P1(B)

Q1

, (7)
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where the explicit expression of P1(B) is given by

P1(B) =

∫
B

1Ĩ(θ−θ0)2≤ε2n

[∫
Fn

1‖0,f−f0+(θ−θ0)γn‖L≤2εne
`n(η)−`n(η0)dπf (f)

]
dπθ(θ),

and similarly for Q1, P2(B) and Q2, with slightly different constants in front of εn’s.

Now let us expand `n(η)− `n(η0) using the LAN-type expansion (2)

`n(θ, f)− `n(θ0, f0) = ∆`(1)
n (θ) + ∆`(2)

n (θ, f),

where ∆`
(1)
n (θ) is the parametric part and ∆`

(2)
n (θ, f) contains the terms depending on f ,

∆`(1)
n (θ) =− nĨ(θ − θ0)2/2 +

√
n(θ − θ0)W(1,−γ).

∆`(2)
n (θ, f) =− n‖0, f + (θ − θ0)γ − f0‖2

L/2 +
√
nW(0, f + (θ − θ0)γ − f0) +Rn(θ, f).

The first term factorizes from the integral with respect to f , while the second term can be
decomposed making appear the sequence γn

∆`(2)
n (θ, f) =− n‖0, f + (θ − θ0)γn − f0‖2

L/2 +
√
nW(0, f + (θ − θ0)γn − f0) (i)

+Rn(θ0, f + (θ − θ0)γn) +Rn(θ, f)−Rn(θ0, f + (θ − θ0)γn) (ii)

−
√
nh〈 (0, f − f0 + (θ − θ0)γn) , (0, γ − γn) 〉L (iii)

− h2‖0, γ − γn‖2
L/2 + hW(0, γ − γn). (iv)

Note that (iv) is always a oP (1 + h2) by assumption. Also, we have that (ii) reduces to
Rn(θ0, f + (θ − θ0)γn) since the two other terms combine into a oP (1 + h2) due to (N1).

From the preceding arguments ∆`
(2)
n (θ, f) is, up to a oP (1+h2), equal to a term depending

only on f + (θ − θ0)γn. Let us denote it ∆`
(3)
n (f + (θ − θ0)γn). Then

∆`(3)
n (f + (θ − θ0)γn) =− n‖0, f + (θ − θ0)γn − f0‖2

L/2

+
√
nW(0, f + (θ − θ0)γn − f0) +Rn(θ0, f + (θ − θ0)γn)

−
√
nh〈 (0, f − f0 + (θ − θ0)γn) , (0, γ − γn) 〉L.

This leads to the following upper-bound on P1(B),

P1(B) ≤
∫
B; Ĩ(θ−θ0)2≤ε2n

e∆`
(1)
n (θ)

[∫
Fn, ‖0,f+(θ−θ0)γn−f0‖L≤2εn

e∆`
(3)
n (f+(θ−θ0)γn−f0)dπf (f)

]
︸ ︷︷ ︸

In(θ)

dπθ(θ).

As in [4], since γn belongs to H, one can now change variables in the Gaussian measure into
brackets by setting g = f + (θ − θ0)γn. Doing so, the bracket In = In(θ) above becomes

In =

∫
g∈Fn(θ), ‖0,g−f0‖L≤2εn

e∆`
(3)
n (g−f0)

{
e(θ−θ0)Uγn−(θ−θ0)2‖γn‖2H/2

}
dπf (g).
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Let us notice that (θ − θ0)2‖γn‖2
H is a o(h2) with our choice of γn. Next, as in [4], let us

recognize in some terms defining ∆`
(3)
n (actually all except the inner product) a likelihood

in the model where θ = θ0. Indeed, the difference of log-likelihoods in this model, say
∆`θ=θ0n equals

∆`θ=θ0n =`θ=θ0n (g)− `θ=θ0n (f0)

=− n‖0, g − f0‖2
L/2 +

√
nW(0, g − f0) +Rn(θ0, g).

Therefore, up to a normalizing factor which is independent of θ and f , let us recognize
in In a posterior expectation, in the model where θ = θ0, with respect to the prior πf
and with observations X. This expectation was introduced in Section 2 with the notation
Eθ=θ0

Π (· |X). If ∝ stands for proportionality up to a constant,

In ∝ Eθ=θ0
Π (1g∈Fn(θ), ‖0,g−f0‖L≤2εne

(θ−θ0)Uγn−
√
nh〈(0,g−f0),(0,γ−γn)〉L |X).

Due to Lemma 2, the indicator can be deleted, up to a negligible term. We can now apply
Lemma 1 to obtain, with h =

√
n(θ − θ0),

In(θ) ∝ ehζ
σ
neoP (1+h2).

This leads to the following bound on P1(B).

P1(B) ≤
∫
B; Ĩ(θ−θ0)2≤ε2n

e−h
2Ĩ/2+hW(1,−γ)+hζσn+oP (1+h2)dπθ(θ).

Now coming back to (7), very similar (upper or lower) bounds can be obtained in exactly
the same way as above for each of the terms P2(B), Q1, Q2. Provided the Lemmas are
proved, this leads to the result, by simple manipulations on the (by now) parametric-type
likelihood.

Lemma 1. Suppose that (3) holds. Then, denoting h =
√
n(θ − θ0), as n→ +∞,

Eθ=θ0
Π (e(θ−θ0)Uγn−

√
nh〈(0,f−f0),(0,γ−γn)〉L |X)

= Eθ=θ0
Π (e(θ−θ0)Uγn |X) · Eθ=θ0

Π (e−
√
nh〈(0,f−f0),(0,γ−γn)〉L |X)

= ehζ
σ
n+oP (1+h2).

Proof of Lemma 1. We consider the case where Kn is odd, which slightly simplifies the
presentation, the case Kn even being analogous, as explained below. We first focus on the
term e(θ−θ0)Uγn . The explicit expression of Uh for any h in H is given in Section 2. Let
fk be a shorthand notation for 〈f, εk〉L2 . Notice that under the prior it is distributed as a
Gaussian variable of variance σ2

k, since fk = σkνk.
Note that if θ = θ0, the model consists in “observing f twice”. More precisely, observing

the paths (Y, Z) is equivalent to observing the collection of pairs
∫
εk(·)dY (·),

∫
εk(·)dZ(·),
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any k ≥ 1, but also to observing the collection
∫
εk(·)dY (·),

∫
εk(· − θ0)dZ(·); k ≥ 1.

Denoting by yk, zk this last pair, we have

yk = fk +
1√
n
ζ

(1)
k and zk = fk +

1√
n
ζ

(2)
k ,

where ζ
(1)
k , ζ

(2)
k are independent standard normal. From this it is fairly direct to see that

the posterior distribution of f given X is the product of the posteriors fk | yk, zk. The later
are normal by conjugacy of the normal prior under Eθ=θ0

Π and simple calculations lead to

fk |X
L
=

under E
θ=θ0
Π

N

(
n

2n+ σ−2
k

(yk + zk),
1

2n+ σ−2
k

)
.

The posterior expectation of exp((θ−θ0)Uγn) is now computed using the expression of Uγn
together with the simple identity, for any V of law N(a, σ2), log E(eµV ) = µa + µ2σ2/2.
For compactness in the following formulas, let us set ψk(θ) = (θ − θ0)σ−2

k γn,k. We have,
using the preceding identities, that the posterior at stake equals∏

k≤Kn

Eθ=θ0
Π (eψk(θ)fk |X) =

∏
k≤Kn

exp

[
nψk(θ)

2n+ σ−2
k

(yk + zk) +
ψk(θ)

2

2(2n+ σ−2
k )

]
=
∏
k≤Kn

exp

[
ψk(θ)f0,k

2n

2n+ σ−2
k

]
(a)

× exp

[
ψk(θ)

2
√
n

2n+ σ−2
k

(ζ
(1)
k + ζ

(2)
k )

]
(b)

× exp

[
ψk(θ)

2

2(2n+ σ−2
k )

]
(c)

The main term turns out to be (a). We explicit it next, splitting the sum in even and odd
k’s. Since Kn is odd, one can write Kn = 2Mn + 1, for some integer Mn ≥ 1.

(a) = exp

[
π(θ − θ0)

∑
p≤Mn

[
−σ−2

2p pf0,2p+1f0,2p

(
2n

2n+ σ−2
2p

)
+ σ−2

2p+1pf0,2pf0,2p+1

(
2n

2n+ σ−2
2p+1

)]]

= exp

[
π(θ − θ0)

∑
p≤Mn

pf0,2p+1f0,2p(σ
−2
2p+1 − σ−2

2p )

{
(2n)2

(2n+ σ−2
2p )(2n+ σ−2

2p+1)

}]

Turning to the study of (b) and (c),

Eη0(b) = exp

[∑
k≤Kn

ψk(θ)
2

2n

(
n

2n+ σ−2
k

)2
]

(c) = exp

[∑
k≤Kn

ψk(θ)
2

2n

n

2n+ σ−2
k

]
.
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Condition (3) and the definition of Kn directly imply Eη0(b) + (c) = exp(o(1 + h2)).
Now focusing on the second term, note that the expression 〈(0, f0), (0, γ− γn)〉L equals

2
∫ 1

0
f0(γ − γn). But, since f0 is a C1, 1-periodic function by assumption,∫ 1

0

f0(u)γ(u)du = −
∫ 1

0

f0(u)f ′0(u)/2 = 0.

Since Kn is odd, the same argument shows that
∫ 1

0
f0γn is zero. Thus we focus on

〈(0, f), (0, γ − γn)〉L = 2
∫
f(γ − γn). Let us set wk(θ) = −2(θ − θ0)nγk, any k > Kn.

Similar to the case k ≤ Kn,∏
k>Kn

Eθ=θ0
Π (ewk(θ)fk |X) =

∏
k>Kn

exp

[
nwk(θ)

2n+ σ−2
k

(yk + zk) +
wk(θ)

2

2(2n+ σ−2
k )

]
=
∏
k>Kn

exp

[
wk(θ)f0,k

2n

2n+ σ−2
k

]
(a’)

× exp

[
wk(θ)

2
√
n

2n+ σ−2
k

(ζ
(1)
k + ζ

(2)
k )

]
(b’)

× exp

[
wk(θ)

2

2(2n+ σ−2
k )

]
(c’)

Similarly as for (a)-(b), using (3) one verifies that Eη0(b’) and (c’) are exp(o(1 + h2)). To
write down (a’), we split the sum along even and odd k′s,

(a’) = exp

[
2π(θ − θ0)n

∑
p>Mn

[
pf0,2p+1f0,2p

(
2n

2n+ σ−2
2p

)
− pf0,2pf0,2p+1

(
2n

2n+ σ−2
2p+1

)]]

= exp

[
π(θ − θ0)(2n)2

∑
p>Mn

pf0,2p+1f0,2p

{
σ−2

2p+1 − σ−2
2p

(2n+ σ−2
2p )(2n+ σ−2

2p+1)

}]
.

Regrouping (a) and (a’) concludes the proof in the case of odd Kn. When Kn is even, the
argument is similar, except at the split point k = Kn. In that case one uses the fact that
an extra contribution comes from −2

∫ 1

0
f0γn = 2Mnf0,Knf0,Kn+1 to regroup the terms for

k = Kn and k = Kn + 1, leading to the same expression of the leading terms.

Lemma 2. Suppose that (3) holds. Then, as n→ +∞,

Eθ=θ0
Π (1g∈Fn(θ), ‖0,g−f0‖L≤2εne

{(θ−θ0)Uγn−
√
nh〈 (0,g−f0) , (0,γ−γn) 〉L} |X)

= (1 + oP (1))ehζ
σ
n+oP (1+h2).

Proof. Let λn(θ, g) be the term into the braces. Applying Cauchy-Schwarz inequality,

Eθ=θ0
Π (

[
1− 1g∈Fn(θ), ‖0,g−f0‖L≤2εn

]
eλn(θ,g) |X)

≤ Eθ=θ0
Π (

[
1− 1g∈Fn(θ), ‖0,g−f0‖L≤2εn

]
|X)1/2Eθ=θ0

Π (e2λn(θ,g) |X)1/2

≤ oP (1)Eθ=θ0
Π (e2λn(θ,g) |X)1/2.
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The bound by oP (1) results from the second part of assumption (N1). The last square
root can be computed exactly in the same way as in Lemma 1. In fact, we can notice that
the leading term in the computations in the proof of Lemma 1 is linear in θ− θ0 (for both
cases k > Kn and k ≤ Kn), so we have that

Eθ=θ0
Π (e2λn(θ,g) |X)1/2 = Eθ=θ0

Π (eλn(θ,g) |X)eoP (1+h2)(1 + oP (1)).

This leads to the assertion of the Lemma.

4 Appendix, checking conditions (C1) - (N1)

Let us check that the priors Πα,Πα,∗ verify conditions (C1), (N1) for some rate εn, in some
domain of values of the regularity parameters (α, β). The arguments are very similar to
the ones used in [4] for the translation parameter estimation, [4], eq. (9). In fact, here we
obtain the same set of parameters (α, β) for which (C1), (N1) are satified, see [4], Fig. 1.

First, we check the concentration condition (C1) following the approach in [12]. The
first step is to show a concentration in terms of a distance for which tests with exponential
decrease exist. Given the true parameter (θ0, f0) and another parameter (θ1, f1), let us set

φn = 1{2
∫ 1

0

(f1 − f0)(t− θ0)dY (t) + 2

∫ 1

0

{f1(t− θ1)− f0(t− θ0)}dZ(t) > ‖f1‖2 − ‖f0‖2}.

Simple calculations analogous to Lemma 5 in [12] show that this test enables to test the
true (θ0, f0) versus a ball with appropriate exponential decrease of the error probabilities,
see [4], eq. (4) or [12], eq. (2.2). The corresponding testing distance dT is given by

dT ((θ1, f1), (θ2, f2))2 = ‖f1 − f2‖2 + ‖f1(· − θ1)− f2(· − θ2)‖2,

One then relates d2
T to the squared-distance ‖f1− f2‖2

2 + (θ1− θ2)2. This is easily done by
adapting Lemma 4 in [4] to the case of not-necessarily symmetric f . Once those distances
are related, the verifications of the entropy and prior mass conditions are done exactly as
in [4], Section 4.1.1, thus leading to (C1). One also verifies that the rate εn can be taken
proportional to n−α∧β/(2α+1).

Now we check (N1). The term Rn(θ0, f + (θ− θ0)γ) is zero so one focuses on Rn(θ, f).
We first introduce a sieve Fn on which it is possible to restrict the supremum in condition
(N1). Let us introduce the Hilbert space of functions

Bp = {f =
∑
k≥1

fkεk(·),
∑
k≥1

k2pf 2
k < +∞}, p ≥ 1,

equipped with the norm ‖f‖2
2,p =

∑
k≥1 k

2pf 2
k . The idea is to use Borell’s inequality in the

form of [24], Theorem 5.1. This result exactly tells us that overwhelming probability, the
Gaussian prior (either Πα or Πα,∗) draws functions g which can be written

g = εnv0 +
√
nεnw0, with v0 ∈ B0

1, w ∈ Hα
1 , (8)
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but also, for 1 ≤ p < α, and some rate αn → 0 to be specified,

g = αnv +
√
nαnw, with v ∈ Bp

1, w ∈ Hα
1 , (9)

where Hα
1 denotes the unit ball of the RKHS of the prior (we use the same notation Hα

1

for Πα and Πα,∗ though the corresponding spaces differ slightly) and Bp
1 the unit ball of

the space Bp. As in [4], one can then define a sieve Fn as the intersection of the set of
functions defined by (8) and (9). Under some conditions on αn, Borell’s inequality implies
that the complement F \Fn has probability less than exp(−nε2

n), see [4], Lemma 13. Thus
it is possible to restrict the study of the posterior (and of (N1)) to Fn.

We first deal with the deterministic terms Rn,3, Rn,4. To control Rn,4, it is enough to
bound from above separately

∫
(af (t − θ) − af (t − θ0))2dt and

∫
Dn(t, h)2dt. This last

term can be bounded as in [4], Lemma 5 (adapting slightly the proof to accomodate to
not necessarily symmetric functions f), leading to a bound in o(1 + h2). The first term is
bounded using the decomposition (9) in the form f = αnv + wn, with ‖wn‖2

Hα1
≤ nα2

n,∫ 1

0

(af (t− θ)− af (t− θ0))2dt

. nα2
n

∫ 1

0

(v(t− θ)− v(t− θ0))2dt+ n

∫ 1

0

((wn − f0)(t− θ)− (wn − f0)(t− θ0))2dt.

The bounds on the respective variances have been derived in [4], see the bounds to (22)-
(23). The first term is a O(α2

nh
2) and the second is a O((1 + h2)α2

nn
2/(1+2α)). Thus both

are o(1 + h2) provided that αn = o(n−1/(1+2α)).
To bound Rn,3, we develop the product and bound again each term separately. One

resulting term is
∫

(af −hf ′0)(t−θ0)Dn(t, h)dt and, similar to Lemma 6 in [4], is a o(1+h2)
as soon as εn = o(n−1+β/2). Another term is h

∫
f ′0(t− θ0)(af (t− θ)− af (t− θ0))dt. Using

Cauchy-Schwarz inequality, we can re-use the bound of the previous display. The last term
to bound is

∫
af (t− θ0)(af (t− θ)−af (t− θ0))dt. First we notice that, for any w in L2[0, 1]

1-periodic of Fourier coefficients wk, expanding the function on the Fourier basis,∫ 1

0

w(t− θ0)(w(t− θ0)− w(t− θ))dt =
∑
k≥1

sin2(πk(θ − θ0))(w2
2k + w2

2k+1).

Applying this to the function af =
√
n(f − f0) and using the inequality sin(x) ≤ x enables

us to bound the quantity at stake by a constant times h2
∑

k≥1 k
2(f0,k − fk)

2. We split

this sum along indexes k ≤ k(n) and k > k(n), with k(n) = bn1/(1+2α)c. The sum up to
k(n) leads to the bound h2k(n)2‖f − f0‖2 ≤ h2k(n)2ε2

n. Due to the expressions of k(n)
and εn, this is a o(h2) when α ∧ β ≥ 1. The sum for k > k(n) is bounded noticing that∑

k>k(n) k
2f 2

0,k = o(1) since β > 1 and using the decomposition (9) as follows∑
k>k(n)

k2f 2
k ≤ α2

n

∑
k>k(n)

k2v2
k + nα2

n

∑
k>k(n)

k2w2
k.
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Since v ∈ Bp
1 with p > 1 the first term is a o(α2

n). Since w ∈ Hα
1 , we have that∑

k>k(n)

k2w2
k ≤ k(n)1−2α

∑
k>k(n)

k1+2αw2
k = o(k(n)1−2α).

By definition of k(n), we conclude that the term at stake is a o(h2) if n2/(1+2α)α2
n = o(1).

The stochastic terms Rn,1 and Rn,2 are exactly the same (up to the symmetry assumption
on f , which does not change the proofs) as in [4], see eq. (16)-(18), so we can borrow the
proofs.

The imposed conditions on εn, αn found above are the same as in [4], section 4.1.3,
where it is checked that those are satisfied as soon as α > 1 +

√
3/2, β > 3/2 and, if

β < 2 ∧ α, also α < (3β − 2)/(4− 2β). This is the zone depicted in [4], Fig. 1. It includes
in particular the rectangle α > 1 +

√
3/2, β ≥ 2, where (N1) is therefore satisfied.
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70(2, Ser. A):267–313, 2008.

23


	Introduction
	Posterior concentration in the curve alignment model
	Semiparametric structure
	Prior
	Bernstein-von Mises Theorem, sufficient conditions
	Main result
	Discussion

	Proof of Theorem 1
	Appendix, checking conditions (C1) - (N1) 

